Project description:The Greenland shark (Somniosus microcephalus, Squaliformes: Somniosidae) is a long-lived Arctic top predator, which in combination with the high historical and modern fishing pressures, has made it subject to increased scientific focus in recent years. Key aspects of reproduction are not well known as exemplified by sparse and contradictory information e.g. on birth size and number of pups per pregnancy. This study represents the first comprehensive work on Greenland shark reproductive biology based on data from 312 specimens collected over the past 60 years. We provide guidelines quantifying reproductive parameters to assess specific maturation stages, as well as calculate body length-at-maturity (TL50) which was 2.84±0.06 m for males and 4.19±0.04 m for females. From the available information on the ovarian fecundity of Greenland sharks as well as a meta-analysis of Squaliform reproductive parameters, we estimate up to 200-324 pups per pregnancy (depending on maternal size) with a body length-at-birth of 35-45 cm. These estimates remain to be verified by future observations from gravid Greenland sharks.
Project description:A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R) and the tense (T) states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.