Project description:Ultra-small microorganisms are ubiquitous in Earth's environments. Ultramicrobacteria, which are defined as having a cell volume of <0.1 μm3, are often numerically dominant in aqueous environments. Cultivated representatives among these bacteria, such as members of the marine SAR11 clade (e.g., "Candidatus Pelagibacter ubique") and freshwater Actinobacteria and Betaproteobacteria, possess highly streamlined, small genomes and unique ecophysiological traits. Many ultramicrobacteria may pass through a 0.2-μm-pore-sized filter, which is commonly used for filter sterilization in various fields and processes. Cultivation efforts focusing on filterable small microorganisms revealed that filtered fractions contained not only ultramicrocells (i.e., miniaturized cells because of external factors) and ultramicrobacteria, but also slender filamentous bacteria sometimes with pleomorphic cells, including a special reference to members of Oligoflexia, the eighth class of the phylum Proteobacteria. Furthermore, the advent of culture-independent "omics" approaches to filterable microorganisms yielded the existence of candidate phyla radiation (CPR) bacteria (also referred to as "Ca. Patescibacteria") and ultra-small members of DPANN (an acronym of the names of the first phyla included in this superphyla) archaea. Notably, certain groups in CPR and DPANN are predicted to have minimal or few biosynthetic capacities, as reflected by their extremely small genome sizes, or possess no known function. Therefore, filtered fractions contain a greater variety and complexity of microorganisms than previously expected. This review summarizes the broad diversity of overlooked filterable agents remaining in "sterile" (<0.2-μm filtered) environmental samples.
Project description:Persistence of Listeria monocytogenes in retail deli environments is a serious food safety issue, potentially leading to cross-contamination of ready-to-eat foods such as deli meats, salads, and cheeses. We previously discovered strong evidence of L. monocytogenes persistence in delis across multiple states. We hypothesized that this was correlated with isolates’ innate characteristics, such as biofilm-forming capacity or gene differences.We further chose four isolates for RNA-sequencing analysis and compared their global biofilm transcriptome to their global planktonic transcriptome. Analysis of biofilm vs planktonic gene expression did not show the expected differences in gene expression patterns. Overall, L. monocytogenes persistence in the deli environment is likely a matter of poor sanitation and/or facility design, rather than isolates’ biofilm-forming capacity, sanitizer tolerance, or genomic content
Project description:Triclosan (TCS), a kind of pharmaceuticals and personal care products (PPCPs), is widely used and has had a large production over years. It is an emerging pollutant in the water environment that has attracted global attention due to its toxic effects on organisms and aquatic ecosystems, and its concentrations in the water environment are expected to increase since the COVID-19 pandemic outbreak. Some researchers found that microbial degradation of TCS is an environmentally sustainable technique that results in the mineralization of large amounts of organic pollutants without toxic by-products. In this review, we focus on the fate of TCS in the water environment, the diversity of TCS-degrading microorganisms, biodegradation pathways and molecular mechanisms, in order to provide a reference for the efficient degradation of TCS and other PPCPs by microorganisms.