Project description:Klebsiella pneumoniae poses a significant global health threat primarily attributable to its pronounced resistance. Here, we report an in vitro acquired resistance analyses of K. pneumoniae to the combination of amikacin and polymyxin B. We found some differentially expressed genes associated with the resistome of K. pneumoniae. The main differences were found in the genes aphA, asmA, phoP, and in the arn operon. Once these genes are related to modification in lipopolysaccharides, aminoglycosides and in the membrane structure, the mechanisms associated with them can justify the resistance acquisition to amikacin and polymyxin b.
Project description:Klebsiella pneumoniae is an arising threat to human health. However, host immune responses in response to this bacterium remain to be elucidated. The goal of this study was to identify the dominant host immune responses associated with Klebsiella pneumoniae pulmonary infection. Pulmonary mRNA profiles of 6-8-weeks-old BALB/c mice infected with/without Klebsiella pneumoniae were generated by deep sequencing using Illumina Novaseq 6000. qRT–PCR validation was performed using SYBR Green assays. Using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, we identified several immune associated pathways, including complement and coagulation cascades, Toll-like receptor signaling pathway, Rap1 signaling pathway, chemokine signaling pathway, TNF signaling pathway, phagosome and NOD-like receptor signaling pathway, were involved in Klebsiella pneumoniae pulmonary infection. Using ICEPOP (Immune CEll POPulation) analysis, we found that several cell types were involved in the host immune response to Klebsiella pneumoniae pulmonary infection, including dendritic cells, macrophages, monocytes, NK (natural killer) cells, stromal cells. Further, IL-17 chemokines were significantly increased during Klebsiella pneumoniae infection. This study provided evidence for further studying the pathogenic mechanism of Klebsiella pneumoniae pneumonia infection.