Project description:Conjugative plasmids are the main vehicle for the horizontal spread of antimicrobial resistance (AMR). Although AMR plasmids provide advantages to their hosts under antibiotic pressure, they can also disrupt the cell’s regulatory network, impacting the fitness of their hosts. Despite the importance of plasmid-bacteria interactions on the evolution of AMR, the effects of plasmid carriage on host physiology has remained underexplored, and most studies have focused on model bacteria and plasmids that lack clinical relevance. Here, we analyzed the transcriptional response of 11 clinical enterobacterial strains (2 Escherichia coli, 1 Citrobacter freundii and 8 Klebsiella spp.) and the laboratory-adapted E. coli MG1655 to carriage of pOXA-48, one of the most widely spread carbapenem-resistance plasmids. Our analyses revealed that pOXA-48 produces variable responses on their hosts, but commonly affects processes related to metabolism, transport, response to stimulus, cellular organization and motility. More notably, the presence of pOXA-48 caused an increase in the expression of a small chromosomal operon of unknown function in Klebsiella spp. and C. freundii, which is not present in E. coli. Phylogenetic analysis suggested that this operon has been horizontally mobilized across different Proteobacteria species. We demonstrate that a pOXA-48-encoded LysR transcriptional regulator controls the expression of the operon in Klebsiella spp. and C. freundii. In summary, our results highlight a crosstalk between pOXA-48 and the chromosome of its natural hosts.
Project description:This SuperSeries is composed of the following subset Series: GSE35746: Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling [tiling arrays] GSE35821: Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling [TSS-Seq] Refer to individual Series
Project description:Bacteria respond to changes in their external environment like temperature by changing the transcription of their genes, but we know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response of a shift from 37°C to 15°C in wild-type Escherichia coli, Salmonella enterica, Citrobacter rodentium, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens, as well as ∆rpoS strains of E. coli and S. enterica. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there are only 16 genes differentially expressed in wild-type strains of all six species. GO enrichment of regulated genes suggests many species-specific phenotypic responses to temperature changes, but terms involved in iron metabolism, central metabolism, and response to osmotic stress are implicated in at least half of the species. The alternative sigma factor RpoS regulates about 200 genes at 15°C in E. coli and S. enterica, with only 83 genes in common between the two species. Divergence in the RpoS-regulon between the two species is due to both species-specific genes in each genome as well as differences in regulation of shared genes. Overall, there is limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically, due both to some genes being species-specific, as well as the species-specific regulation of shared genes. Regulatory responses to a common stress evolve rapidly between closely related species.
Project description:The exchange of mobile genomic islands (MGIs) between microorganisms is often mediated by phages. As a consequence, not only phage genes are transferred, but also genes that have no particular function in the phage's lysogenic cycle. If they provide benefits to the phage's host, such genes are referred to as ‘morons’. The present study was aimed at characterizing a set of Enterobacter cloacae, Klebsiella pneumoniae and Escherichia coli isolates with exceptional antibiotic resistance phenotypes from patients in a neonatal ward. Unexpectedly, these analyses unveiled the existence of a novel family of closely related MGIs in Enterobacteriaceae. The respective MGI from E. cloacae was named MIR17-GI. Importantly, our observations show that MIR17-GI-like MGIs harbor genes associated with high-level resistance to cephalosporins. Further, we show that MIR17-GI-like islands are associated with integrated P4-like prophages. This implicates phages in the spread of cephalosporin resistance amongst Enterobacteriaceae. The discovery of a novel family of MGIs spreading ‘cephalosporinase morons’ is of high clinical relevance, because high-level cephalosporin resistance has serious implications for the treatment of patients with Enterobacteriaceal infections.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strains MS14386.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain B36.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain AJ055.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain MS14387.