Project description:BackgroundRestoration of rooting competence is important for rejuvenation in Sequoia sempervirens (D. Don) Endl and is achieved by repeatedly grafting Sequoia shoots after 16 and 30 years of cultivation in vitro.ResultsMass spectrometry-based proteomic analysis revealed three proteins that differentially accumulated in different rejuvenation stages, including oxygen-evolving enhancer protein 2 (OEE2), glycine-rich RNA-binding protein (RNP), and a thaumatin-like protein. OEE2 was found to be phosphorylated and a phosphopeptide (YEDNFDGNSNVSVMVpTPpTDK) was identified. Specifically, the protein levels of OEE2 increased as a result of grafting and displayed a higher abundance in plants during the juvenile and rejuvenated stages. Additionally, SsOEE2 displayed the highest expression levels in Sequoia shoots during the juvenile stage and less expression during the adult stage. The expression levels also steadily increased during grafting.ConclusionOur results indicate a positive correlation between the gene and protein expression patterns of SsOEE2 and the rejuvenation process, suggesting that this gene is involved in the rejuvenation of Sequoia sempervirens.
Project description:Xylopsora canopeorum Timdal, Reese Næsborg & Bendiksby is described as a new species occupying the crowns of large Sequoia sempervirens trees in California, USA. The new species is supported by morphology, anatomy, secondary chemistry and DNA sequence data. While similar in external appearance to X. friesii, it is distinguished by forming smaller, partly coralloid squamules, by the occurrence of soralia and, in some specimens, by the presence of thamnolic acid in addition to friesiic acid in the thallus. Molecular phylogenetic results are based on nuclear (ITS and LSU) as well as mitochondrial (SSU) ribosomal DNA sequence alignments. Phylogenetic hypotheses obtained using Bayesian Inference, Maximum Likelihood and Maximum Parsimony all support X. canopeorum as a distinct evolutionary lineage belonging to the X. caradocensis-X. friesii clade.