Project description:In this paper, we present the first comparative transcriptome profiles with ARR treated and control of R. palustris. Moreover, putative two ARR biotransformation mechanisms in R. palustris were first given. All of these provided a valuable genomic resource for further studying molecular mechanism of biotransformation and genetic modification of R. palustris.
Project description:The synthesis mechanisms and function evaluation of selenium(Se)-enriched microorganism remain relatively unexplored. We here report the Se biotransformation by A. oryzae A02. Comparative RNA-Seq analysis revealed the upregulation of functional genes implicated in selenium transformation, activating multiple potential pathways for selenium reduction. The assimilatory and dissimilatory reductions of Se oxyanions engaged numerous parallel and interconnected pathways, manifesting a harmonious equilibrium in overall Se biotransformation in A. oryzae A02.
2024-07-07 | GSE270867 | GEO
Project description:Chlordecone biotransformation study
| PRJNA608607 | ENA
Project description:Phosphogypsum environmental contamination adds to antibiotic resistance
Project description:Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics are not known in most invertebrates. Here, using high density tiling arrays with over 2 million probes, we explored genome-wide gene expression in the tunicate Oikopleura dioica in response to two model xenobiotic chemicals – the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo). The genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes, as in vertebrates. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways. Oikopleura appears to have basic defensome toolkit consisting of phase I, phase II and phase III biotransformation genes.
Project description:We have undertaken a detailed analysis of the biotransformation of five of the most therapeutically important benzimidazole anthelmintics - albendazole (ABZ), mebendazole (MBZ), thiabendazole (TBZ), oxfendazole (OxBZ) and fenbendazole (FBZ) - in Caenorhabditis elegans. As a step to identifying nematode enzymes potentially responsible for benzimidazole biotransformation, we characterised the transcriptomic response to each of the benzimidazole drugs using the C. elegans strain CB3474 ben-1(e1880)III in order to minimize general phenotypic and stress responses to the drug. In the case of albendazole (ABZ), mebendazole (MBZ), thiabendazole (TBZ), and oxfendazole (OxBZ) - the shared transcriptomic response was dominated by the up- regulation classical xenobiotic response genes.
Project description:Biotransformation of soil organochlorine pesticides (OCP) is often impeded by a lack of nutrients relevant for bacterial growth and/or co-metabolic OCP biotransformation. By providing space-filling mycelia, fungi promote contaminant biodegradation by facilitating bacterial dispersal and the mobilization and release of nutrients in the mycosphere. We here tested whether mycelial nutrient transfer from nutrient-rich to nutrient-deprived areas facilitates bacterial OCP degradation in a nutrient-deficient habitat. The legacy pesticide hexachlorocyclohexane (HCH), a non-HCH-degrading fungus (Fusarium equiseti K3), and a co-metabolically HCH-degrading bacterium (Sphingobium sp. S8) isolated from the same HCH-contaminated soil were used in spatially structured model ecosystems. Using 13C-labelled fungal biomass and protein-based stable isotope probing (protein-SIP), we traced the incorporation of 13C fungal metabolites into bacterial proteins while simultaneously determining the biotransformation of the HCH isomers. The relative isotope abundance (RIA, 7.1 – 14.2%), labeling ratio (LR, 0.13 – 0.35), and the shape of isotopic mass distribution profiles of bacterial peptides indicated the transfer of 13C-labeled fungal metabolites into bacterial proteins. Distinct 13C incorporation into the haloalkane dehalogenase (linB) and 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase (LinC), as key enzymes in metabolic HCH degradation, underpin the role of mycelial nutrient transport and fungal-bacterial interactions for co-metabolic bacterial HCH degradation in heterogeneous habitats. Nutrient uptake from mycelia increased HCH removal by twofold as compared to bacterial monocultures. Fungal-bacterial interactions hence may play an important role in the co-metabolic biotransformation of OCP or recalcitrant micropollutants (MPs).
2023-02-24 | PXD038571 | Pride
Project description:Arsenic biotransformation in wastewater sludge