Project description:The aim of this research was to identify miRNAs that are associated with neoadjuvant hormonal therapy resisitance in prostate cancer.
Project description:Gleason grading is an important prognostic indicator for prostate adenocarcinoma and is crucial for patient treatment decisions. However, intermediate-risk patients diagnosed in Gleason Grade Groups (GG) 2 and GG3 can harbour either aggressive or non-aggressive disease, resulting in under- or over-treatment of a significant number of patients. Here, we performed proteomic, differential expression, machine learning, and survival analyses for 1,348 matched tumour and benign samples from 278 patients. Three proteins (F5, TMEM126B and EARS2) were identified as candidate biomarkers in patients with biochemical recurrence. Multivariate Cox regression yielded 18 proteins, from which a risk score was constructed to dichotomise prostate cancer patients into low- and high-risk groups. This 18-protein signature is prognostic for the risk of biochemical recurrence and completely independent of the intermediate GG. Our results suggest that markers generated by computational proteomic profiling have the potential for clinical applications including integration into prostate cancer management.
Project description:PSA screening has led to enormous overtreatment of prostate cancer, due to the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and most indeterminate in terms of prognosis. Using the complementary DNA (cDNA)–mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (N=358) and Physicians’ Health Study (PHS; N=109). We developed an mRNA signature of Gleason comparing individuals with Gleason ≤6 to those with Gleason ≥8 tumors, and applied the model among Gleason 7 cases to discriminate lethal cases. We built a157-gene signature using the Swedish data that predicted Gleason with low misclassification (AUC=0.91); when this signature was tested in the PHS validation set, the discriminatory ability remained high (AUC=0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4+3 or 3+4 (p=0.006). Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment.
Project description:PSA screening has led to enormous overtreatment of prostate cancer, due to the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and most indeterminate in terms of prognosis. Using the complementary DNA (cDNA)M-bM-^@M-^Smediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (N=358) and PhysiciansM-bM-^@M-^Y Health Study (PHS; N=109). We developed an mRNA signature of Gleason comparing individuals with Gleason M-bM-^IM-$6 to those with Gleason M-bM-^IM-%8 tumors, and applied the model among Gleason 7 cases to discriminate lethal cases. We built a157-gene signature using the Swedish data that predicted Gleason with low misclassification (AUC=0.91); when this signature was tested in the PHS validation set, the discriminatory ability remained high (AUC=0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4+3 or 3+4 (p=0.006). Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment. 198 cases from the population-based Swedish-Watchful Waiting cohort. The cohort consists of men with localized prostate cancer (clinical stage T1-T2, Mx, N0); expression profiles from tumors with Gleason M-bM-^IM-%8 (N=89) were compared to those from tumors with Gleason M-bM-^IM-$6 (N=109)
Project description:Screening of differentially expressed genes between benign and prostate tumors with respect to different prostate cancer gleason score 6 and 8 Keywords: disease subtype analysis
Project description:In this study, comparison of gene expression profiles in benign epithelia from men with prostate cancer to those of men without prostate cancer reveal differences in several genes associated with prostate cancer. Custom Agilent 44K whole human genome expression oligonucleotide microarrays were used to profile benign epithelium from prostate needle biopsies from 15 men with high grade(Gleason 8-10) prostate cancer and 14 age- and BMI-matched controls. All samples were laser-capture microdissected and total RNA isolated and amplified prior to hybridization against a common reference pool of prostate tumor cell lines
Project description:Although many genes have been proposed to be involved in prostate carcinogenesis, no single gene or gene profile has shown to have prognostic value. The main challenge for clinical management is to distinguish slowly growing tumors from those that will relapse. In this study, we compared expression profiles of 18 prostate samples (7 with Gleason 6, 8 with Gleason 7 and 3 with Gleason score equal or higher than 8) and 5 non-neoplastic prostate samples, using the GeneChip® Human Exon Array 1.0 ST of Affymetrix. Microarray analysis revealed 99 genes showing statistically significant differences among tumors with Gleason score 6, 7 and 8. In addition, mRNA expression of 29 selected genes was analyzed by qRT-PCR with microfluidic cards in an extended series of 30 prostate tumors. From these, 29 were selected to be validated and the differential expression of 18 of them (62%) was independently confirmed by quantitative real-time RT-PCR (14 upregulated and 4 downregulated in higher Gleason scores) in the extended series. This list was further narrowed down to 12 genes that were differentially expressed in tumors with Gleason score of 6-7 vs 8. Finally, the protein levels of two genes from the 12-gene signature (SEC14L1 and TCEB1) were additionally validated by immunohistochemistry. Strong protein levels of both genes were correlated with Gleason score, stage, and PSA progression. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during this process.
Project description:In this dataset, we report the gene expression of adjacent Gleason 3 and Gleason 4 foci microdissected from the same prostate cancer sample. We found a striking similarity between adjacent G3 and G4 tumors, consistent with their clonal origin, but very few recurrently up- or down- regulated genes across patients.