Project description:Compositional changes in the microbiota (dysbiosis) may be a basis for Irritable Bowel Syndrome (IBS) but biomarkers are currently unavailable to direct microbiota-directed therapy. We therefore examined whether changes in fecal β-defensin could be a marker of dysbiosis in a murine model. Experimental dysbiosis was induced using four interventions relevant to IBS: a mix of antimicrobials, westernized diets (high-fat/high-sugar and, high salt diets), or mild restraint stress. Fecal mouse β-defensin-3 and 16S rRNA-based microbiome profiles were assessed at baseline, during and following these interventions. Each intervention, except for mild restraint stress, altered compositional and diversity profiles of the microbiota. Exposure to antimicrobials or a high-fat/high-sugar diet, but not mild restraint stress, resulted in decreased fecal β-defensin-3 compared to baseline. In contrast, exposure to the high salt diet increased β-defensin-3 compared to baseline but this was not accompanied by discernible inflammatory changes in the host.
Project description:Purpose: NGS was used to determine if a distinct transcriptomic profile is observed among the experimental mice fed four different dietary components. Methods: We carried out RNA-Seq analysis of ileum tissue from 6 weeks male mice ad libitum fed for 10 weeks a high liquid sugar (23% (w/v)) or/and high fat (60% Kcal from fat) diet. The combined effect of sugar drink and high fat diet (HF-Sugar) was compared with sugar drink only (NF-Sugar), or high fat diet only (HF), or control diet that was plain water and normal fat diet (NF). Results: RNA-Seq revealed sample-specific clusters that included genes responding to each experimental diet. We found only addition of sugar drink to high fat group (HF-Sugar) not NF-Sugar and HF, there was a significant enrichment in biological functions relating to Inflammatory/Immune Responses, especially including dendritic cell (DC) and T cell related signaling pathway. Conclusions: Taken together, our data demonstrate that sugar drink synergistically promotes and exacerbates inflammatory responses driven by the high fat diet.
Project description:The aim of this study was to investigate the causative effect of CS induced dysbiosis on obesity and insulin resistance in a high-fat diet induced obese (DIO) mouse model. Male germ-free BALB/c mice were humanized by fecal microbiota transfer using samples from children born by CS or VD and fed HFD for 16 weeks. Adipose tissue was sampled for RNAseq at study termination.
Project description:High sugar consumption, as well as high-fat diet, is a known cause of obesity and metabolic syndrome. However, the synergistic effect of high-sugar and high-fat consumption rarely has been evaluated, especially in terms of transcriptional regulation. Therefore, we focused on the effect of high sugar consumption on hepatic transcriptional networks in normal and high fat-fed mice. C57BL/6J mice were divided into four groups and were provided either 23%(w/v) sugar solution or plain water with either high-fat or normal-fat diet for 10 weeks. As a result, high sugar consumption significantly altered lipid metabolism-related genes in normal fat-fed mice; however, in high fat-fed mice, high sugar consumption altered inflammation-responsive genes rather than lipid metabolism. After all, these modulations eventually increased lipid accumulation in the liver and caused systemic metabolic disturbances. These observations for the first time suggested that high sugar consumption along with high-fat diet could lead to the development of severe metabolic syndrome via altering hepatic transcriptional networks.