Project description:In this study we characterize microbial community features on the surface of Indian Ocean. 11 samples were collected from Indian Ocean and subjected for quantitative metaproteomics analysis for taxonomic and functional analysis. Our results suggested that metabolic tuning at metaproteomics levels enabled microbial community to sustain stable when subjected to environmental perturbations in the oligotrophic ocean.
Project description:Construction of a comprehensive spectral library for the coral reef fish, Acanthochromis polyacanthus, from both DIA and DDA MS runs. The spectral library was then used to quantify proteomes of individual fish exposed to different environmental conditions including ocean acidification and ocean warming. Proteomes were measured for both liver and brain tissue and differential expression between environmental conditions was analyzed.
Project description:Crustose coralline algae (CCA) are calcifying red macroalgae that play important ecological roles including stabilisation of reef frameworks and provision of settlement cues for a range of marine invertebrates. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found magnitude of effect to be species-specific. Response to OW and OA could be linked to divergent underlying molecular processes across species. Here we show Sporolithon durum, a species that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast, Porolithon onkodes, a major coral reef builder, reduced photosynthetic rates and had a labile transcriptomic response with over 400 significantly differentially expressed genes, with differential regulation of genes relating to physiological processes such as carbon acquisition and metabolism. The differential gene expression detected in P. onkodes implicates possible key metabolic pathways, including the pentose phosphate pathway, in the stress response of this species. We suggest S. durum is more resistant to OW and OA than P. onkodes, which demonstrated a high sensitivity to climate stressors and may have limited ability for acclimatisation. Understanding changes in gene expression in relation to physiological processes of CCA could help us understand and predict how different species will respond to, and persist in, future ocean conditions predicted for 2100.