Project description:Genomic surveys of yeast hybrid species isolated from the wild and from human-related environment, aimed at the reconstruction of the natural evolution of Saccharomyces spp. evolution
Project description:We developed an artificial genome evolution system, which we termed ‘TAQing’, by introducing multiple genomic DNA double-strand breaks using a heat-activatable endonuclease in mitotic yeast. The heat-activated endonuclease, TaqI, induced random DSBs, which resulted in diverse types of chromosomal rearrangements including translocations. Array comparative genomic hybridization (aCGH) analysis was performed with cell-fused Saccharomyces cerevisiae strains induced genome evolution by TAQing system. Some of copy number variations (CNVs) induced by massive genome rearrangements were detected in the TAQed yeast strains.
Project description:Laboratory evolution experiments of yeast cells impaired for microtubule dynamics. The sequencing was done at two time-points, early and late, to identify compensatory mutations. For details see Macaluso et al, Cell Reports, 2025.
Project description:The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. Recent insights highlight CTD’s pivotal role in driving condensate formation on gene loci. Yet, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulatory proteins, forms distinct condensates from unphosphorylated CTD. Function studies demonstrate CTD variants with diverse condensation properties in vitro exhibit difference in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths lead to alternative splicing outcomes impacting cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.