Project description:In this study we investigate the molecular physiology of the main S. cerevisiae commercial strain (PE-2) used on Brazilian bioethanol process under two distinct conditions: typical (TF) and flocculated (co-aggregated - FL) fermentation. Transcriptional machinery of PE-2 was assessed by high throughput sequencing-based methods (RNA-seq) during industrial fed-batch fermentations. Data from comparative analysis revealed distinct transcriptional profiles among conditions, characterized mainly by a deep gene repression on FL process.
Project description:In this study we investigate the molecular physiology of the main S. cerevisiae commercial strain (PE-2) used on Brazilian bioethanol process under two distinct conditions: typical (TF) and flocculated (co-aggregated - FL) fermentation. Transcriptional machinery of PE-2 was assessed by high throughput sequencing-based methods (RNA-seq) during industrial fed-batch fermentations. Data from comparative analysis revealed distinct transcriptional profiles among conditions, characterized mainly by a deep gene repression on FL process. We investigated the transcriptional changes in S. cerevisiae PE-2 strain under industrial fermentation conditions using RNA-seq protocols. We analyzed 13 fermentation time-points where 6 time-points on typical fermentation conditions (TF) and 7 time-points on flocculate conditions(FL). The raw data have been submitted to SRA as SRP014755
Project description:Deep sequencing of transcriptomes allows quantitative and qualitative analysis of many RNA species in a sample, with parallel comparison of expression levels, splicing variants, natural antisense transcripts, RNA editing and transcriptional start and stop sites the ideal goal. By computational modeling, we show how libraries of multiple insert sizes combined with strand-specific, paired-end (SS-PE) sequencing can increase the information gained on alternative splicing, especially in higher eukaryotes. Despite the benefits of gaining SS-PE data with paired ends of varying distance, the standard Illumina protocol allows only non-strand-specific, paired-end sequencing with a single insert size. Here, we modify the Illumina RNA ligation protocol to allow SS-PE sequencing by using a custom pre-adenylated 3M-bM-^@M-^Y adaptor. We generate parallel libraries with differing insert sizes to aid deconvolution of alternative splicing events and to characterize the extent and distribution of natural antisense transcription in C. elegans. Despite stringent requirements for detection of alternative splicing, our data increases the number of intron retention and exon skipping events annotated in the Wormbase genome annotations by 127 % and 121 %, respectively. We show that parallel libraries with a range of insert sizes increase transcriptomic information gained by sequencing and that by current established benchmarks our protocol gives competitive results with respect to library quality. Sequencing of mRNA from C. elegans with libraries of four differing insert sizes
Project description:Deep sequencing of transcriptomes allows quantitative and qualitative analysis of many RNA species in a sample, with parallel comparison of expression levels, splicing variants, natural antisense transcripts, RNA editing and transcriptional start and stop sites the ideal goal. By computational modeling, we show how libraries of multiple insert sizes combined with strand-specific, paired-end (SS-PE) sequencing can increase the information gained on alternative splicing, especially in higher eukaryotes. Despite the benefits of gaining SS-PE data with paired ends of varying distance, the standard Illumina protocol allows only non-strand-specific, paired-end sequencing with a single insert size. Here, we modify the Illumina RNA ligation protocol to allow SS-PE sequencing by using a custom pre-adenylated 3’ adaptor. We generate parallel libraries with differing insert sizes to aid deconvolution of alternative splicing events and to characterize the extent and distribution of natural antisense transcription in C. elegans. Despite stringent requirements for detection of alternative splicing, our data increases the number of intron retention and exon skipping events annotated in the Wormbase genome annotations by 127 % and 121 %, respectively. We show that parallel libraries with a range of insert sizes increase transcriptomic information gained by sequencing and that by current established benchmarks our protocol gives competitive results with respect to library quality.
2012-08-31 | GSE40507 | GEO
Project description:HS PE experiment sequencing data
Project description:Defective deep placentation, an abnormal transformation of the spiral arteries in the junctional zone of the myometrium, is known to cause significant obstetrical complications such as preeclampsia (PE), fetal growth restriction, and placental infarcts with fetal death. Serological biomarkers to predict and diagnose PE would help antenatal care and reduce the obstetrical complications. To discover biomarkers for prediction of PE, we first performed global proteome profiling of three pairs of maternal plasma samples obtained from the early second trimester pregnant women who subsequently developed PE and controls to identify proteins that were abundant in the patients. We further evaluated the expression changes of PE representing proteins in stored plasma samples of a cohort of subsequently developed PE and their matched controls by MRM assay. We identified both Complement C1s subcomponent (p-value = 0.041) and Protein AMBP (p-value = 0.043) were up-regulated in the cohort of PE plasma samples before manifestation of clinical disease. We propose that these proteins may be involved in the remodeling process of the spiral arteries even before the manifestation of PE. These proteins could be served as potential plasma biomarkers to predict pregnant women at increased risk of developing PE.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare transcriptome profiling (RNA-seq) of E17.5 placentas from control, early-onset (EO) and later-onset (LO) preeclampsia (PE) mice. Methods: E17.5 placental mRNA profiles of offspring from control, EO and LO PE mice were generated by deep sequencing, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the E17.5 placentas from control EO and LO PE mice with BWA workflow and 34,115 transcripts with TopHat workflow. R Conclusions: Our study represents the first detailed analysis of E17.5 placentas transcriptomes, with biologic replicates, generated by mRNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within tissue. We conclude that mRNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
Project description:We used a molecular barcoding approach to quantify the fitness of ~60,000 randomly mutated variants of the Saccharomyces cerevisiae U3 snoRNA (the data were further used to calculate a map of intragenic epistatic interactions within this RNA molecule, as descibed in Puchta et al. 2016) We generated two independent mutant libraries ('Small' with ~3 and 'Big' with ~10 SNPs per allele) on centromeric plasmid, with 20nt random barcodes placed in a non-transcribed region downstream of the gene (PE Samples 30-37 - paired-end sequencing of: U3, 70nt linker and 20nt barcode); next we performed competiton experiments in several conditions (E1-5) on populations of yeast cells transformed with both libraries and measured frequencies of mutated variants in time-points during the experiment by deep sequencing of barcodes (Samples 1-29).
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).