Project description:Copper (Cu) plays an essential role in cellular metabolism and limits phytoplankton growth and production in parts of the open sea. Whole transcriptome analysis provides a powerful tool to explore gene expression profiles and cellular metabolic pathways regulated by Cu. In this study, we identified Cu-regulated genes by profiling the transcriptomes of an oceanic diatom, Thalassiosira oceanica 1005, adapted to survive in a Cu-limited and Cu-replete environment. The results provide insights to the mechanisms of adaptation and acclimation of T. oceanica to low Cu environments.
Project description:Enhanced vertical stratification brought about by warming of the ocean surface is expected to reduce vertical circulation and nutrient input with knock-on effects for phytoplankton. Increased nutrient limitation is one predicted outcome, but the response of phytoplankton is uncertain because long-term adaptation to nutrient limitation has not been studied. We used Cu as a model catalytic nutrient to explore the adaptive response of an oceanic diatom to continuous nutrient deprivation. Thalassiosira oceanica was maintained under Cu-limiting and sufficient conditions for more than 2000 generations and the evolved populations evaluated for physiological traits in a reciprocal transplant experiment. Adaptation to low Cu concentration increased Cu use efficiency, so that under Cu-limiting conditions T. oceanica maintained significantly faster rates of net C assimilation and growth than the control and ancestral populations.
Project description:The oceanic diatom Pseudo-nitzschia granii was cultured in the laboratory under steady-state iron-replete and iron-limited conditions. Transcriptomic and proteomic analyses were performed to determine how this organism reorganizes major metabolic processes as a function of iron supply.