Project description:In this report, we have developed a rapid oligonucleotide microarray detection technique to identify the most common ten Legionella spp.. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven air conditioner-condensed water samples with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed interestingly that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp..
Project description:This project intends to conduct comparative proteomics research on wild and cultivated varieties of Dendrobium huoshanense that are similar in plant shape and in the same growth and development stage through proteomics and protein modification omics combined with the differences in metabolites in Dendrobium huoshanense. Full-scan proteomic data of Dendrobium; compare the protein expression levels of wild and cultivated varieties to find relevant candidate proteins, and perform functional annotation and KEGG analysis of metabolic pathways for candidate proteins with different expressions to further analyze the material basis differences between wild and cultivated varieties Provide research objects of molecular biology.
Project description:Dendrobium plants are perennial herbs in the family Orchidaceae (Dendrobium Sw.). Due to protocorm can also produce plant-specific useful metabolites, protocorm is becoming a good substitute. MicroRNAs play essential roles in plant growth, development, and the response to environmental stresses, and they are widely used for prediction of molecular functions for biosynthesizing active comportments in medicinal plants. To obtain insight into the function of miRNAs in Dendrobium plants. Illumina sequencing of D. nobile protocorm, D. officinale protocorm and D. nobile leaf were conducted. A total of 439, 412 and 432 miRNAs were identified in three samples, and their expression levels were significantly different. Specially, 2, 12 and 4 specific miRNAs were identified. Through integrated GO and KEGG function annotation, miRNAs mainly involved in metabolic pathways, plant hormone signal transduction, biological regulation and protein binding. AACT, MK, DXR and HDS as important enzymes in synthesizing basic precursor isoprene pyrophosphate (IPP). were predicted controlled by 6 different miRNAs in terpenoid backbone biosynthesis pathway. 26 miRNAs participated in Auxin, Cytoklinine, Abscisic acid, Jasmonic acid and Salicylic acid signal transduction pathway. Our results could provide valuable information about miRNAs involved in terpenoid biosynthesis and plant hormone signal transduction pathway in D. nobile and candidate genes for increasing the yield of dendrobine.
Project description:Conjugative plasmids are the main vehicle for the horizontal spread of antimicrobial resistance (AMR). Although AMR plasmids provide advantages to their hosts under antibiotic pressure, they can also disrupt the cell’s regulatory network, impacting the fitness of their hosts. Despite the importance of plasmid-bacteria interactions on the evolution of AMR, the effects of plasmid carriage on host physiology has remained underexplored, and most studies have focused on model bacteria and plasmids that lack clinical relevance. Here, we analyzed the transcriptional response of 11 clinical enterobacterial strains (2 Escherichia coli, 1 Citrobacter freundii and 8 Klebsiella spp.) and the laboratory-adapted E. coli MG1655 to carriage of pOXA-48, one of the most widely spread carbapenem-resistance plasmids. Our analyses revealed that pOXA-48 produces variable responses on their hosts, but commonly affects processes related to metabolism, transport, response to stimulus, cellular organization and motility. More notably, the presence of pOXA-48 caused an increase in the expression of a small chromosomal operon of unknown function in Klebsiella spp. and C. freundii, which is not present in E. coli. Phylogenetic analysis suggested that this operon has been horizontally mobilized across different Proteobacteria species. We demonstrate that a pOXA-48-encoded LysR transcriptional regulator controls the expression of the operon in Klebsiella spp. and C. freundii. In summary, our results highlight a crosstalk between pOXA-48 and the chromosome of its natural hosts.
Project description:Dendrobium officinale is a traditional medicinal herb with a mount of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. A total of 4857 DEGs, including 2943 up- and 1932 down-regulated genes, were identified between the control and MeJA-treated groups. Several shikimate and methylerythritol 4-phosphate pathway genes and a number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the alkaloid metabolism in D. officinale.