Project description:The on-going Microbial Observatory Experiments on the International Space Station (ISS) revealed the presence of various microorganisms that may be affected by the distinct environment of the ISS. The low-nutrient environment combined with enhanced irradiation and microgravity may trigger changes in the molecular suit of microorganisms leading to increased virulence and resistance of microbes. Proteomic characterization of two Aspergillus fumigatus strains, ISSFT-021 and IF1SW-F4, isolated from HEPA filter debris and cupola surface of the ISS, respectively, is presented, along with a comparison to experimentally established clinical isolates Af293 and CEA10. In-depth analysis highlights variations in the proteome of both ISS-isolated strains when compared to the clinical strains. Proteins up-regulated in ISS isolates were involved in oxidative stress response, and carbohydrate and secondary metabolism. This report provides insight into possible molecular adaptation of filamentous fungi to the unique ISS environment. Lastly, an attempt was made to elucidate plausible causes of the enhanced virulence of both ISS-isolated A. fumigatus strains.
Project description:Metagenomics analysis reveals co-infection of fungi and bacteria isolated from different regions of brain tissue from elderly persons and patients with Alzheimer's disease.
Project description:We analyzed the transcriptional profile by RNA-sequencing of exosomal content isolated from blood plasma of three astronauts who flew on various ISS missions between 1998-2001. Computational analysis of the transcriptome of these exosomes identified 27 differentially expressed lncRNAs with possible functions and clinical implications.
2022-01-18 | GSE193490 | GEO
Project description:Fungi in constrasting patterns in Mt. Oakley
Project description:Lymphatic endothelial cells (LEC) were isolated from MT-ret tumor tissue 12h after treatment with an Ang2-blocking antibody or control-IgG
Project description:This study presents the first global genomic, proteomic, and secondary metabolomic characterization of the filamentous fungus, Aspergillus nidulans, following growth on the International Space Station (ISS). The investigation included the A. nidulans wild-type and 3 mutant strains, two of which were genetically engineered to enhance secondary metabolite (SM) production. Whole genome sequencing (WGS) revealed that ISS conditions altered the A. nidulans genome in specific regions. In strain CW12001, which features overexpression of the SM global regulator laeA, ISS conditions induced a point mutation that resulted in the loss of the laeA stop codon. Differential expression of proteins involved in stress response, carbohydrate metabolic processes, and SM biosynthesis was observed. ISS conditions significantly decreased prenyl xanthone production in the wild-type strain and increased asperthecin production in LO1362 and CW12001, which are deficient in a major DNA repair mechanism. Together, these data provide valuable insights into the genetic and molecular adaptation mechanism of A. nidulans to the spacecraft environment and present many economic benefits.