Project description:The diurnal motion of higher plants, responding to the alternation of day and night, known as nyctinastic movements or "sleep movements", has been discussed frequently. We present the first description of the circadian rhythm of the water plant Ludwigia sedoides (Humb. & Bonpl.) H.Hara of the family Onagraceae, furthermore its morphology and anatomy. Our results indicate that the plant's movements are endogenous, although environmental factors certainly have an influence. The majority of plants with nyctinastic leaf movements have a pulvinus, as the crucial part of the plant enabling this movement. Although the basal section of the L. sedoides petiole is not swollen, the tissue functions similarly to a pulvinus. It consists of a central conducting tissue with thick-walled cells, which is surrounded by thin-walled motor cells that can undergo visible shrinking and swelling. Thus, the tissue functionally corresponds to a pulvinus. Examinations of cellular processes, like measurements of the turgor pressure in the petiole, need to be evaluated in future studies.
Project description:In 1953, Hara provided new combinations for many sectional and species names when he combined Jussiaea L. with Ludwigia L., and at the time, Ludwigiasect.Oligospermum (Micheli) H.Hara was the correct name for one well-defined section. However, subsequent changes to/clarifications of the botanical code have necessitated a change for that name in that now an autonym is treated as having priority over the name or names of the same date and rank that established it. Since Hara's combination was based on Jussiaeasect.Oligospermum Micheli, the correct name for this section is Ludwigiasect.Jussiaea (L.) Hoch, W.L.Wagner, & P.H.Raven.
Project description:Here, we present the first plastome of Ludwigia octovalvis (Onagraceae, Myrtales) as well as the first plastome in the subfamily Ludwigioideae. This genome is notable for its contracted inverted repeat regions and an expanded small single-copy region compared to other species in the orders Myrtales and Geraniales.
Project description:Current antiobesity and antidiabetic tools have been insufficient to curb these diseases and frequently cause side effects; therefore, new pancreatic lipase and α-glucosidase inhibitors could be excellent aids for the prevention and treatment of these diseases. The aim of this study was to identify, quantify, and characterize the chemical compounds with the highest degree of inhibitory activity of these enzymes, contained in a Ludwigia octovalvis hydroalcoholic extract. Chemical purification was performed by liquid-liquid separation and column chromatography. Inhibitory activities were measured in vitro, employing acarbose, orlistat, and a Camellia sinensis hydroalcoholic extract as references. For structural elucidation, Nuclear Magnetic Resonance was carried out, and High Performance Liquid Chromatography was used to quantify the compounds. For α-glucosidases, L. octovalvis hydroalcoholic extract and its ethyl acetate fraction showed half-maximal Inhibitory Concentration (IC50) values of 700 and 250 μg/mL, for lipase, 480 and 718 μg/mL, while C. sinensis showed 260 and 587 μg/mL. The most active compounds were identified as ethyl gallate (1, IC50 832 μM) and gallic acid (2, IC50 969 μM); both displayed competitive inhibition of α-glucosidases and isoorientin (3, IC50 201 μM), which displayed uncompetitive inhibition of lipase. These data could be useful in the development of a novel phytopharmaceutical drug.