Project description:There are very few studies exploring the genetic diversity of tick-borne encephalitis complex viruses. Most of the viruses have been sequenced using capillary electrophoresis, however, very few viruses have been analyzed using deep sequencing to look at the genotypes in each virus population. In this study, different viruses and strains belonging to the tick-borne encephalitis complex were sequenced and genetic diversity was analyzed. Shannon entropy and single nucleotide variants were used to compare the viruses. Then genetic diversity was compared to the phylogenetic relationship of the viruses.
Project description:Zika virus (ZIKV) is a mosquito-transmitted positive-sense RNA virus in the family Flaviviridae. Live attenuated vaccines have been successfully used to combat infection by flaviviruses, such as yellow fever and Japanese encephalitis viruses. A Zika virus harboring combined mutations in the envelope protein glycosylation site and in the nonstructural 4B protein amino acid 36 (ZE4B-36) was generated and assessed for stability, attenuation, and protection against infection. To determine the genetic stability of its RNA genome, ZE4B-36 was serially passaged in vitro in Vero cells. Virus harvested from passages (P)1 to P6 was subjected to next generation sequencing and downstream analysis to determine its nucleotide sequence variability. Specifically, single nucleotide variant analysis showed that the ZE4B-36 genome decreased its genetic diversity and resulted in a more stable nucleotide sequence. Thus, in addition to showing attenuation and protection, ZE4B-36 is a stable live attenuated virus that possesses characteristics important for a vaccine to combat Zika disease.
Project description:The Rift Valley Fever (RVF) is an arthropod-borne disease present in several countries of Africa and Middle East. It is caused by RVF virus which can infect both humans and animals. In humans, it leads to various manifestations including hepatitis, encephalitis and death, while in domestic animals it usually causes miscarriage in pregnant females and it is often fatal for the newborn. Not all people or animal infected by the virus present the same disease. Some patients exhibit unapparent or moderate febrile reactions, while others develop severe symptoms. This observation suggests that host genetic factors play a role in controlling the outcome of infection. In this work, we compare the response of two different inbred strains of mice, MBT/Pas and BALB/cByJ, to infection with RVF virus. These strains exhibit different profiles of susceptibility to RVF virus infection. Indeed, MBT/Pas mice rapidly develop high viraemia and die soon after infection, while BALB/cByJ mice have a lower viraemia and die later. Interestingly, mouse embryonic fibroblasts (MEFs) obtained from MBT/Pas foetuses allows higher viral production than BALB/cByJ MEFs. Keywords: expression profiling The experiment was designed to include ARN samples from MBT/Pas and BALB/cByJ MEFs infected with the Rift Valley Fever (RVF) virus, and their respective mock-infected controls; each one of those in triplicate. Therefore, we have used 12 different samples for the study, divided as follows: 3 samples of RVF virus-infected BALB/cByJ MEFs, 3 samples of mock-infected BALB/cByJ MEFs, 3 samples of RVF virus-infected MBT/Pas MEFs and 3 samples of mock-infected MBT/Pas MEFs. Each RNA was extracted from a different culture well.