Project description:Powassan virus (POWV), a vector-borne pathogen transmitted by Ixodes ticks in North America, is the causative agent of Powassan encephalitis. As obligate hematophagous organisms, ticks transmit pathogens like POWV at the tick bite site, specifically during the initial stages of feeding. Tick-feeding and salivary factors modulate the host's immunological responses, facilitating blood feeding and pathogen transmission. However, the mechanisms of immunomodulation during POWV transmission remain inadequately understood. In this study, we investigated the global cutaneous transcriptomic changes associated with tick bites during POWV transmission. We collected skin biopsies from the tick attachment sites at 1-, 3-, and 6-hours post-feeding by POWV-infected and uninfected ticks, followed by RNA sequencing of these samples. Differentially expressed genes were analyzed for pathway enrichment using gene ontology and pathway enrichment analyses. Our findings reveal that tick feeding alone significantly impacts the skin transcriptome within the first 1 to 3 hours of tick attachment. Although early POWV transmission induces minimal changes in the local environment, a pronounced shift toward a proinflammatory state is observed 6 hours post tick attachment, characterized by neutrophil recruitment and interleukin signaling. These transcriptomic data elucidate the dynamic changes at the tick bite site, transitioning from changes that assist blood meal acquisition to a proinflammatory phase that may facilitate viral dissemination.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment. Four milimeter ear biopsies from BALB/cJ mice infested with Ixodes scapularis nymphs were assayed using Affymetrix genechip 430A 2.0 arrays at 1, 3, 6, and 12 hours after infestation during a primary exposure. 3 mice were measured at each time point. Controls were 3 similarly housed but tick-free mice.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment.