Project description:RNA N6-melthyladenosine has been suggested to play important roles in various biological processes. Chicken ovary development is a process controlled by complex gene regulations. In this study, transcriptome-wide m6A methylation of the Wuhua yellow-feathered chicken ovaries before and after sexual maturation was profiled to identify potential molecular mechanisms underlying chicken ovary development. The results showed that m6A levels of mRNAs changed dramatically during sexual maturity. A total of 1476 differential m6A peaks were found between these two stages with 662 significantly up-regulated methylation peaks and 814 down-regulated methylation peaks after sexual maturation. A positive correlation was found between the m6A peaks and gene expression levels. Functional enrichment analysis indicated that apoptosis related pathways might be the key molecular regulatory pathway underlying the poor reproductive performance of Wuhua yellow-feathered chicken. The fine expressional regulation of genes related to follicles development and follicle atresia controlled by m6A during the maturity results in the poor reproductive performance in the Wuhua yellow-feathered chicken. However, the regulatory mechanisms are still unclear, thus more further studies are required. The pathways and corresponding candidate genes found here may be useful for molecular design breeding for improving egg production performance in Chinese local chicken breed, and it will also benefit for the genetic resource protection of valuable avian species.
Project description:Probiotics may alter stress sensitivity by modulating the gut-brain axis. The heat-inactivated, enteric-colonizing Lactobacillus gasseri, CP2305 (paraprobiotic CP2305), has been shown to ameliorate psychological stress-related symptoms. This study was designed to reveal the beneficial effects of paraprobiotic CP2305 on top athletes experiencing physical and mental stresses.
2019-12-31 | GSE122671 | GEO
Project description:16s RNA sequencing of cecal microbiota of yellow-feathered broilers
Project description:Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations where there could be an interaction with Salmonella enterica Typhimurium, one of the commonly isolated serovars from processed chicken. In this study, the microbiota response to a 24-hour co-exposure to Salmonella enterica Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared to other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE Fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal model.
Project description:We investigated the effects of heat stress on the liver transcriptome of 3wk-old chicks of a broiler line, the Fayoumi and an advanced intercross line (AIL). Transcriptome sequencing of 48 male chickens using Illumina HiSeq 2500 technology yielded an average of 3.4 million, 100-base -pair single-end, reads per sample.
Project description:For this study, thymic transcriptome responses to an acute heat stress and/or lipopolysaccharide (LPS) were investigated in a broiler line (heat and disease susceptible) and an inbred Fayoumi line (heat and disease resistant) of chickens. In a 2 x 2 design, 22 day-old birds were exposed to heat stress (35°C for 7 hours), lipopolysaccharide (100 µg/kg average body weight per line), or both stressors. Thermoneutral temperature (25°C) and phosphate buffered saline were used as the respective controls. Tissue samples were collected from the thymus and used to isolate high quality RNA. cDNA libraries (n = 31) were constructed and sequenced on the HiSeq 2500.
Project description:The liver plays a central role in metabolism and is important in maintaining homeostasis throughout the body. This study integrated transcriptomic and metabolomic data to understand how the liver responds under chronic heat stress. Chickens from a rapidly growing broiler line were heat stressed for 8 hours per day for one week and liver samples were collected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible for cell cycle regulation, DNA replication, and DNA repair along with immune function. Integrating the metabolome and transcriptome data highlighted multiple pathways affected by heat stress including glucose, amino acid, and lipid metabolism along with glutathione production and beta- oxidation.