Project description:Sensory receptors, including olfactory receptors, taste receptors, and opsins have recently been found in a variety of non-sensory tissues where they have distinct physiological functions. As G protein-coupled receptors, these proteins can serve as important chemosensors by sensing and interpreting chemical cues in the environment. We reasoned that the liver, the largest metabolic organ in the body, is primed to take advantage of some of these sensory receptors in order to sense and regulate blood content and metabolism. In this study, we designed a custom TaqMan array to screen for all bitter, sweet, and umani taste receptors, the non-visual optins, and 44 olfactory receptors in the murine liver.
Project description:KLF7 null mice show profound axonal growth defects in the olfactory epithelium. The goal of this study was the identification of potential KLF7 target genes in olfactory sensory neurons. Keywords: Molecular analysis of knockout mice.
Project description:Adaptation of liver to the postprandial state requires coordinate regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR-signaling, Xbp1-splicing, increased expression of ER-stress genes and phosphatidylcholine synthesis, which translate into a rapid morphological ER-remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increase upon nutrient supply. Sensory food perception activates POMC-neurons in the hypothalamus, optogenetic activation of POMC-neurons activates hepatic mTOR-signaling and Xbp1-splicing and lack of MC4R-expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinatly primes postprandrial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s-axis
Project description:Vagal afferent neurons are thought to convey primarily physiological information, whereas spinal afferents transmit noxious signals from the viscera to the central nervous system. In order to elucidate molecular identities for these different properties, we compared gene expression profiles of neurons located in nodose ganglia (NG) and dorsal root ganglia (DRG) in mice. Intraperitoneal administration of Alexa Fluor-488 conjugated Cholera toxin B allowed identification of neurons projecting to the viscera. Fluorescent neurons in DRG (from T10 to T13) and NG were isolated using laser capture microdissection. Gene expression profiles of visceral afferent neurons, obtained by microarray hybridization, were analysed using multivariate spectral map analysis, SAM algorithm (Significance Analysis of Microarray data) and fold-difference filtering. A total of 1996 genes were found to be differentially expressed in DRG versus NG, including 41 G-protein coupled receptors and 60 ion channels. Expression profiles obtained on laser-captured neurons were contrasted to those obtained on whole ganglia demonstrating striking differences and the need for microdissection when studying visceral sensory neurons because of dilution of the signal by somatic sensory neurons. Furthermore, a detailed catalogue of all adrenergic and cholinergic, GABA, glutamate, serotonin and dopamine receptors, voltage-gated potassium, sodium and calcium channels and transient receptor potential cation channels present in visceral afferents is provided. Our genome-wide expression profiling data provide novel insight into molecular signatures that underlie both functional differences and similarities between NG and DRG visceral sensory neurons. Moreover, these findings will offer novel insight into mode of action of pharmacologic agents modulating visceral sensation. Experiment Overall Design: Three separate experiments were performed. First, 5 whole dorsal root ganglia were compared to 7 whole nodose ganglia. Second, Laser captured visceral neurons derived from 5 dorsal root ganglia and 5 nodose ganglia were compared on MG-U74Av2. Third, Laser captured visceral neurons derived from 9 dorsal root ganglia and 11 nodose ganglia were compared on Mouse430_2.
Project description:Site-specific glycosylation analysis by nLC-MS/MS of recombinant human Fcγ receptors IIA (H&R167 isoforms), IIB and murine Fcγ receptor IIB.
Project description:Visceral sensory neurons encode distinct sensations from healthy organs and initiate pain states that are resistant to common analgesics. Transcriptome analysis is transforming our understanding of sensory neuron subtypes but has generally focused on somatic sensory neurons or the total population of neurons in which visceral neurons form the minority. Our aim was to define transcripts specifically expressed by sacral visceral sensory neurons, as a step towards understanding the unique biology of these neurons and potentially lead to identification of new analgesic targets for pelvic visceral pain. Our strategy was to identify genes differentially expressed between sacral dorsal root ganglia (DRG) that include somatic neurons and sacral visceral neurons, and adjacent lumbar DRG that comprise exclusively somatic sensory neurons. This was performed in male and female mice (adult and E18.5). By developing a method to restrict analyses to nociceptive Trpv1 neurons, a larger group of genes were detected as differentially expressed between spinal level. We identified many novel genes not previously been associated with pelvic visceral sensation or nociception. Limited sex differences were detected across the transcriptome of sensory ganglia, but more were revealed in sacral levels and especially in Trpv1 nociceptive neurons. These data will facilitate development of new tools to modify mature and developing sensory neurons and nociceptive pathways.