Project description:The fullerenes, a kind of carbon nanoparticles, have potential for enhanced stress tolerance in plants. While the positive effects of polyhydroxy fullerene—fullerol on plants in response to drought at the physiological level have been documented, the molecular mechanism in Brassica napus are not entirely understood. In this study, exogenous fullerol was applied to the leaves of B. napus seedlings given drought. The leaves of B. napus seedlings in each treatment (sufficient water condition, drought, and drought combined with fullerol) were used to conduct the molecular mechanism using transcriptomic analysis.
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress. Two-condition experiment, control vs heat stress, 2 time points
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress.
Project description:Drought is one of the most severe stresses leading to retardation of plant growth and development and loss of crop yield. Here we examined the proteome changes of an important oil seed crop canola Brassica napus under drought stress over a 14 day period. Using iTRAQ LC-MS/MS, we identified 2,244 proteins expressed during drought stress. Among them, 412 proteins showed significant changes in abundance under stress, and 67, 243, 287, and 79 proteins were differentially expressed in 3rd, 7th, 10th, and 14th day of drought stress, respectively. Functional analysis of the 412 proteins indicated that the number of proteins associated with “Metabolism”, “Protein synthesis”, and “Signaling” decreased, while those related to “Photosynthesis” and “Stress and defense” increased in response to drought stress. In particular, the proteome profiles at the 7th and 10th day were similar to each other, although there were much more post-translational modifications (PTM) at the 10th day of drought. Interestingly, 286 of 2,244 proteins exhibited PTMs in response to drought stress, 82 of which were differentially changed in drought-stressed plants, and 60 were observed at the 10th day. Furthermore, comparison of protein expression changes with those of gene transcription showed that there was positive correlation in B. napus, although there were different patterns between transcripts and proteins at each time point. As drought stress prolongs, most of the protein abundance changes may be attributed to gene transcription, and PTMs clearly contribute to the protein diversity and functions.
Project description:Heavy rainfall causes flooding of natural ecosystems as well as farmland, negatively affecting crop performance and yield. While the response of the wild model organism Arabidopsis thaliana to such stress conditions is well understood, we hardly know anything about the response of its relative, the important oil crop plant Brassica napus. Here, we analyzed the molecular response of leaves of rapeseed seedlings to full submergence under illumination. RNAseq experiments revealed a strong carbon starvation response under submergence, but no indication for a low-oxygen response. We used two cultivars in this study, one Asian flooding-tolerant cultivar and one European hybrid cultivar, but those genotypes did not show strong differences in their responses to submergence.
Project description:mRNA expression profiling of the embryo, endosperm (micropylar, peripheral, chalazal), and seed coat (outer, inner, chalazal, chalazal proliferating tissue) of the developing Brassica napus seed. Tissues were isolated using laser microdissection (LMD) from Brassica napus seeds at the globular, heart, and mature green stages of seed development.
Project description:A critical barrier for improving crops yield is the compensatory effect between seed weight (SW) and seed number (SN), which has been widely reported in several crops including Brassica napus. Despite the agronomic relevance of this issue, the molecular factors involved in the interaction between SW and SN are largely unknown in crops. In this work, we performed a detailed transcriptomic analysis of 48 seed samples obtained from two rapeseed spring genotypes subjected to different source-sink (S-S) ratios in order to modify the relationship between SW and SN under field conditions.
Project description:C3-C4 intermediate Moricandia suffruticosa showed tolerance to drought and heat stresses, and high photosynthetic capacity under these abiotic stresses as comparing with C3 relative crop rapeseed (Brassica napus). In our study, systematic analysis was conducted to reveal photosynthetic difference between C3-C4 Moricandia suffruticosa and its relative C3 rapeseed from the same Brassiceae tribe. It was found that Moricandia leaf photosynthesis and anatomy were significantly changed compared to rapeseed under drought and heat stress conditions. De novo transcriptome of Moricandia was assembled by next generation sequencing, and unigenes were mapped to respective rapeseed gene locus. Then comparative transcriptome analysis was conducted in leaf tissues of Moricandia and rapeseed under both drought and heat stresses. Main pathways and candidate genes were revealed from this analysis, which may be associated with the stress induced change in Moricandia.
Project description:Time course of gene expression profiles during seed development and maturation in Brassica napus were studied using Combimatrix Brassica microarray.