Project description:Medicago truncatula engages in root nodule symbiosis by developing a de novo plant organ (known as nodule) in its roots in response to the infection by rhizobia. These nodules are de novo plant organs that provide an optimal environment for the rhizobia to fix nitrogen in exchange for photosynthates. The establishment of root nodule symbioses (RNS) requires the coordination of two distinct processes: bacterial infection and nodule organogenesis. In this study we used single-cell RNA-seq to investigate the first hours of the establishment of the root nodule symbiosis aiming to identify the transcriptional mechanisms governing this process.
2024-01-17 | GSE224539 | GEO
Project description:Soybean root nodule and rhizosphere microbiome
| PRJNA625756 | ENA
Project description:The root nodule microbiome of Trifolium rubens
Project description:In order to better understand the commonalities and differences in lateral root and nodule development, we compared their organogenesis and correlated this with changes in gene expression. To initiate lateral roots in Medicago truncatula we turned 2-day-old seedlings 135°, before returning them to their original axis of growth, while for nodule initiation we applied droplets of Sinorhizobium meliloti on the susceptibility zone of the root.
Project description:Legumes establish endosymbiotic associations with nitrogen-fixing rhizobia, which they host inside root nodules. Here, specific physiological and morphological adaptations, such as the production of oxygen-binding leghemoglobin proteins and the formation of an oxygen diffusion barrier in the nodule periphery, are essential to protect the oxygen-labile bacterial nitrogenase enzyme. The molecular basis of the latter process remains elusive, as the identification of required genes is limited by the epistatic effect of nodule organogenesis over nodule infection and rhizobia accommodation. We overcame this by exploring the phenotypic diversity of Lotus japonicus accessions that uncouple nodule organogenesis from nodule infection when inoculated with a sub-compatible Rhizobium strain. Using comparative transcriptomics, we identified genes with functions associated with oxygen homeostasis and deposition of lipid polyesters on cell walls to be specifically upregulated in infected compared to uninfected nodules. As such hydrophobic modifications on cell walls are pivotal for creating diffusion barriers like the root endodermis, we focused on two Fatty acyl-CoA reductase genes that were specifically activated in the nodule or in the root endodermis. Mutant lines in a Fatty acyl-CoA reductase gene expressed exclusively in the nodule endodermis showed had decreased suberization of this cell layer and increased nodule permeability compared to wild type plants. Oxygen concentrations were significantly increased in the inner cortex of mutant nodules, which correlated with reduced nitrogen fixation rates, and impaired shoot growth. These results provide the first genetic evidence for the formation of the nodule oxygen diffusion barrier, a key adaptation enabling nitrogen fixation in legume nodules.
Project description:12plex_medicago_2012-03 - mtefd1 and wt roots and nodules - Identification of genes affected by a KO mutation in a transcription factor involved in root and nodule development, MtEFD1. - Comparison of wild type and efd-1 transcriptomes in non inoculated nitrogen-starved control roots and nodules at 4 dpi, 6 and 11 dpi. Comparison of wild type nodule (11 dpi) and root transcriptomes, using mixed random primed and polydT primed probes.