Project description:Whereas the human fetal immune system is poised to generate immune tolerance and suppress inflammation in utero, an adult-like immune system emerges to orchestrate anti-pathogen immune responses in post-natal life. It has been posited that cells of the adult immune system arise as a discrete ontological “layer” of hematopoietic stem-progenitor cells (HSPCs) and their progeny; evidence supporting this model in humans has, however, been inconclusive. Here, we combine bulk and single-cell transcriptional profiling of lymphoid, myeloid, and HSPCs from fetal, perinatal, and adult developmental stages to demonstrate that the fetal-to-adult transition occurs progressively along a continuum of maturity—with a substantial degree of interindividual variation at the time of birth—rather than via a transition between discrete waves. These findings have important implications in the design of strategies for prophylaxis against infection in the newborn, and for the use of umbilical cord blood (UCB) in the setting of transplantation.
Project description:We compared differences in fetal and adult T cells by performing whole genome profiling on sort-purified T cells (naïve CD4+ and Treg cells) from human fetal specimens (18-22 gestational weeks) and adult specimens (age 25-40 years old). Fetal and Adult Naïve CD4+ T cells phenotype: CD3+CD4+CD45RA+CCR7+CD27+, Fetal and Adult CD4+CD25+ Treg phenotype: CD3+CD4+CD25bright Four different groups were analyzed: Fetal Naïve CD4+ T cells, Adult Naïve CD4+ T cells, Fetal Treg cells, Adult Treg cells. For each group three independent donors were analyzed.
Project description:We compared differences in fetal and adult T cells by performing whole genome profiling on sort-purified T cells (naïve CD4+ and Treg cells) from human fetal specimens (18-22 gestational weeks) and adult specimens (age 25-40 years old). Fetal and Adult Naïve CD4+ T cells phenotype: CD3+CD4+CD45RA+CCR7+CD27+, Fetal and Adult CD4+CD25+ Treg phenotype: CD3+CD4+CD25bright
Project description:This SuperSeries is composed of the following subset Series: GSE25085: Comparison of gene expression profiles by CD3+CD4+ thymocytes derived from fetal and adult hematopoietic stem cells GSE25087: Human Fetal and Adult Peripheral Naïve CD4+ T cells and CD4+CD25+ Treg cells Refer to individual Series
Project description:Both the fetus and the mother who are involved in maternal anti-fetal rejection during pregnancy show distinct alterations in the peripheral blood transcriptome
Project description:BackgroundA key event in human development is the establishment of erythropoietic progenitors in the bone marrow, which is accompanied by a fetal-to-adult switch in hemoglobin expression. Understanding of this event could lead to medical application, notably treatment of sickle cell disease and β-thalassemia. The changes in gene expression of erythropoietic progenitor cells as they migrate from the fetal liver and colonize the bone marrow are still rather poorly understood, as primary fetal liver (FL) tissues are difficult to obtain.MethodsWe obtained human FL tissue and adult peripheral blood (AB) samples from Thai subjects. Primary CD34+ cells were cultured in vitro in a fetal bovine serum-based culture medium. After 8 days of culture, erythroid cell populations were isolated by flow cytometry. Gene expression in the FL- and AB-derived cells was studied by Affymetrix microarray and reverse-transcription quantitative PCR. The microarray data were combined with that from a previous study of human FL and AB erythroid development, and meta-analysis was performed on the combined dataset.ResultsFL erythroid cells showed enhanced proliferation and elevated fetal hemoglobin relative to AB cells. A total of 1,391 fetal up-regulated and 329 adult up-regulated genes were identified from microarray data generated in this study. Five hundred ninety-nine fetal up-regulated and 284 adult up-regulated genes with reproducible patterns between this and a previous study were identified by meta-analysis of the combined dataset, which constitute a core set of genes differentially expressed between FL and AB erythroid cells. In addition to these core genes, 826 and 48 novel genes were identified only from data generated in this study to be FL up- and AB up-regulated, respectively. The in vivo relevance for some of these novel genes was demonstrated by pathway analysis, which showed novel genes functioning in pathways known to be important in proliferation and erythropoiesis, including the mitogen-activated protein kinase (MAPK) and the phosphatidyl inositol 3 kinase (PI3K)-Akt pathways.DiscussionThe genes with upregulated expression in FL cells, which include many novel genes identified from data generated in this study, suggest that cellular proliferation pathways are more active in the fetal stage. Erythroid progenitor cells may thus undergo a reprogramming during ontogenesis in which proliferation is modulated by changes in expression of key regulators, primarily MYC, and others including insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), neuropilin and tolloid-like 2 (NETO2), branched chain amino acid transaminase 1 (BCAT1), tenascin XB (TNXB) and proto-oncogene, AP-1 transcription factor subunit (JUND). This reprogramming may thus be necessary for acquisition of the adult identity and switching of hemoglobin expression.
Project description:Both the fetus and the mother who are involved in maternal anti-fetal rejection during pregnancy show distinct alterations in the peripheral blood transcriptome Total RNA isolated from umbilical cord blood and maternal blood was compared between cases without (Normal) and with maternal anti-fetal rejection (FIRS2) using whole genome DASL assay.