Project description:The Crown-of-thorns starfish (COTS) Acanthaster planci feeds on hard corals and its outbreaks are a major cause of destruction of coral communities on the Australian Great Barrier Reef. Whilst population booms and the social behaviour of COTS have been well studied, little is known about the neural mechanisms underlying COTS metabolism and behaviour. One of the major classes of chemical messengers that regulate metabolic and behavioural processes in animals are neuropeptides. Here, we have analysed COTS genome and transcriptome sequence data to identify neuropeptide precursor proteins in this species. Mass spectrometry was employed to identify neuropeptides extracted from radial nerve cords. Forty-nine neuropeptide precursors were identified, including homologs of neuropeptide signaling systems that are evolutionarily conserved throughout the Bilateria.
Project description:Neuropeptidomics of the sea cucumber, Holothuria scabra. Peptides from the radial nerve cords of the H. scabra were extracted using a combination of ultrafiltration and acidified methanol-based precipitation.
Project description:Neuropeptidomics of the sea cucumber, Stichopus cf. horrens. Peptides from the radial nerve cords of the S. cf. horrens were extracted using a combination of ultrafiltration and acidified methanol-based precipitation.
Project description:This work describes the molecular mechanisms of meiotic maturation and cell cycle in the starfish Astropecten Aranciacus. The study has been conducted assembling a de-novo transcriptome from the different cellular stages: oocytes, egg, zygote and early embryos. Differential expression analysis followed by rtPCR are used to assess the validity of the assembly.
Project description:The objective was to analyse the transcriptomic response of radial nerve, nerve ring and tentacle to spawning pheromone with the view of obtaining insight into the ensuing physiological response.