Project description:Single cell ATAC-seq (scATAC-seq) was performed on macaque embryonic stem cell-derived cerebral organoids. scATAC-seq was performed on day 60 (2 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed on bonobo induced pluripotent stem cells (iPSC) derived cerebral organoids. scATAC-seq was performed on day 60 (2 months old cerebral organoid) and day 120 (4 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of human pluripotent stem cells to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of chimpanzee induced pluripotent stem cells (iPSC) to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).
Project description:Single cell ATAC-seq of PBMC - resting and stimulated. Used for comparison to asses the capabilies of the five-prime sequencing method in the detection of cis-regulatory elements using SCAFE (see publication).
Project description:The assay for transposase-accessible chromatin using sequencing (ATAC-seq) is widely used to identify regulatory regions throughout the genome. However, only a few studies have been done at the single cell level (scATAC-seq) due to technical difficulties. Here we developed a simple and robust plate-based scATAC-seq method, combining upfront bulk tagmentation with single-nuclei sorting, to investigate open chromatin regions. We applied this method on mouse splenocytes and unbiasedly revealed key regulatory regions and transcription factors that define each cell (sub)type.
Project description:Three oesophageal tissue derived cell lines, one from a normal tissue (HET1A) and two from tumour tissues (OE33 and OE199) were mixed with same number of each cell type in the same tube to get a mixed population. The C1 platform (Fluidigm) was used to capture single-cells and scATAC-seq protocols from Fluidigm ScriptHub is then used to generate the sequencing library. A single-cell ATAC-seq Bioinformatics pipeline is then developed to deconvolute the cells into their respective cell types.