Project description:Cd treated Model organism or animal sample from triploid Carassius auratus red var. x (Carassius auratus red var. x Cyprinus carpio)
Project description:Hybridization and polyploidization may lead to divergence in adaptation and boost speciation in angiosperms and some lower animals. Epigenetic change plays a significant role in the formation and adaptation of polyploidy. Studies of the effects of methylation on genomic recombination and gene expression in allopolyploid plants have achieved good progress. However, relevant advances in polyploid animals have been relatively slower. In the present study, we used the bisexual, fertile, genetically stable allotetraploid generated by hybridization of Carassius auratus red var. and Cyprinus carpio L. to investigate cytosine methylation level using methylation-sensitive amplification polymorphism (MSAP) analysis. We observed 38.31% of the methylation changes in the allotetraploid compared with the parents at 355 randomly selected CCGG sites. In terms of methylation status, these results indicate that the level of methylation modification in the allotetraploid may have increased relative to that in the parents. We also found that the major methylation changes were hypermethylation on some genomic fragments and genes related to metabolism or cell cycle regulation. These results provide circumstantial evidence that DNA methylation might be related to the gene expression and phenotype variation in allotetraploid hybrids. Our study partly fulfils the need for epigenetic research in polyploid animals, and provides evidence for the epigenetic regulation of allopolyploids.
Project description:Quantitative of muscle tissue proteomics profiling in triploid fish, red crucian carp, common carp and allotetraploid were obtained by SWATH- MS
Project description:Rediploidization is considered to be a part of the evolutionary history of allotetraploids, and resulted in the emergence of novel epigenetic regulatory activities. To study the changing patterns of gene expression following the reduction of a genome by 50%, we used RNA-seq and quantitative real-time PCR (qPCR) to investigate total gene expression and homoeolog expression in three hybrids of a C. auratus red var. (2n = 100, ♀) (R) and C. carpio (2n = 100, ♂) (C) (i.e., F1, F18, and G4) and their original parents. A comparison of homoeolog expression between G4 and F18 identified 7 genes (0.22%) that exhibited novel R/C homoeolog expression patterns in G4, while 4 genes (0.12%) were affected by R/C homoeolog silencing. We determined the direction and extent of the homoeolog expression bias (HEB). The C-HEB genes (i.e., nrp1a and igf1) and R-HEB genes (i.e., fgf23 and esm1) provided insights into the effects of the dominance of one parental homoeolog expression on growth regulation. This dominance may contribute to the rapid growth of G4 fish. Our findings may be relevant for clarifying the relationship between growth heterosis and differences in homoeolog expression patterns.