Project description:We report a series of single-cell transcriptomic datasets of regenerating mouse muscle tissue generated with the 10x Genomics Chromium v3 platform.
Project description:We report a series of single-cell transcriptomic datasets of regenerating mouse muscle tissue generated with the 10x Genomics Chromium platform.
Project description:We report a series of single-cell transcriptomic datasets of the mouse regenerating muscle tissue produced using the Chromium 10X technology.
Project description:Muscle injury was elicited by cardiotoxin injection into the tibialis anterior muscle. Macrophages were isolated 2 days post-injury from the regenerating muscle. We used microarray to obtain global gene expression data of muscle-derived tissue macrophage subsets. Tissue macrophages were collected from regenerating muscle samples of three animals, Ly6C+ F4/80low and Ly6C- F4/80high macrophage subsets were sorted. The global gene expression patterns of distinct macrophage subsets were analyzed on Affymetrix microarrays.
Project description:Muscle injury was elicited by cardiotoxin injection into the tibialis anterior muscle. Macrophages were isolated 2 days post-injury from the regenerating muscle. We used microarray to obtain global gene expression data of muscle-derived tissue macrophage subsets.
Project description:We report a series of spatial transcriptomics datasets of regenerating mouse muscle tissue generated with the 10x Genomics Visium platform.
Project description:Skeletal muscle stem cells, or satellite cells (SCs), are essential to regenerate and maintain muscle. Quiescent SCs reside in an asymmetric niche between the basal lamina and myofiber membrane. To repair muscle, SCs activate, proliferate, and differentiate, fusing to repair myofibers or reacquiring quiescence to replenish the SC niche. Little is known about when SCs reacquire quiescence during regeneration or the cellular processes that direct SC fate decisions and progression through myogenesis. Single cell sequencing of myogenic cells in regenerating muscle identifies SCs reacquiring quiescence and reveals that non-cell autonomous signaling networks influence SC fate decisions during regeneration. Single cell RNA-sequencing of regenerating skeletal muscle reveals that RBP expression, including numerous neuromuscular disease-associated RBPs, is temporally regulated in skeletal muscle stem cells and correlates to stages of myogenic differentiation. By combining machine learning with RBP engagement scoring, we discover that the neuromuscular disease associated RBP Hnrnpa2b1 is a differentiation-specifying regulator of myogenesis controlling myogenic cell fate transitions during terminal differentiation.