Project description:Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae) Allopolyploidy results from two events: the merger of divergent genomes and genome duplication. Both events have important functional consequences for the evolution and adaption of newly formed allopolyploid species. In spite of significant progress made the last years, a few studies have decoupled the effects of hybridization from genome duplication in the observed patterns of expression changes accompanying allopolyploidy in natural conditions. We used Agilent Rice oligo-microarrays to explore gene expression changes following allopolyploidy in Spartina that includes a classical example of recent allopolyploid speciation, S. anglica formed during the 19th century following genome duplication of the hybrid S. x townsendii. Our data indicate important, thought different effects of hybridization and genome duplication in the expression patterns of the hybrid and allopolyploid. Deviation from parental additivity was most important following hybridization and was accompanied by maternal expression dominance, although transgressively expressed genes were also encountered. Maternal dominance is attenuated following genome duplication in S. anglica while this species exhibits an increased number of transgressively over expressed genes. These results reflect the decoupled effects of the “genomic shock” following hybridization and genome redundancy, on the genetic, epigenetic and regulatory mechanisms characterizing transcriptomic evolution in allopolyploids.
Project description:Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae) Allopolyploidy results from two events: the merger of divergent genomes and genome duplication. Both events have important functional consequences for the evolution and adaption of newly formed allopolyploid species. In spite of significant progress made the last years, a few studies have decoupled the effects of hybridization from genome duplication in the observed patterns of expression changes accompanying allopolyploidy in natural conditions. We used Agilent Rice oligo-microarrays to explore gene expression changes following allopolyploidy in Spartina that includes a classical example of recent allopolyploid speciation, S. anglica formed during the 19th century following genome duplication of the hybrid S. x townsendii. Our data indicate important, thought different effects of hybridization and genome duplication in the expression patterns of the hybrid and allopolyploid. Deviation from parental additivity was most important following hybridization and was accompanied by maternal expression dominance, although transgressively expressed genes were also encountered. Maternal dominance is attenuated following genome duplication in S. anglica while this species exhibits an increased number of transgressively over expressed genes. These results reflect the decoupled effects of the “genomic shock” following hybridization and genome redundancy, on the genetic, epigenetic and regulatory mechanisms characterizing transcriptomic evolution in allopolyploids. We used Agilent Rice oligo-microarrays to explore gene expression changes among Spartina species, following interspesific hybridization and genome duplication (allopolyploidy). The analysed species included the parents S. maritima & S.alterniflora, the hybrid F1 S x. towensendii and the allopolyploid S.anglica. A total of 20 slides (five replicates per species) were hybridized on a 44 K Rice Agilent array using a one color desgin.
Project description:Time series metasecretomes (weeks 1, 3, 5 and ten) of lignocellulose responsive microbiomes enriching on Spartina anglica biomass for 16 weeks in a natural UK salt marsh (Welwick, Humber estuary).
Project description:The experiment was designed to test the interactions of Spartina alterniflora, its microbiome, and the interaction of the plant-microbe relationship with oil from the Deepwater Horizon oil spill (DWH). Total RNA was extracted from leaf and root microbiome of S. alterniflora in soils that were oiled in DWH oil spill with or without added oil, as well as those grown in unoiled soil with or without added oil. The work in its entirety characterizes the transport, fate and catabolic activities of bacterial communities in petroleum-polluted soils and within plant tissues.