Project description:To explore the classification and functional roles of bladder immune cells during urinary tract infection (UTI), we performed scRNA-seq analysis of immune cells extracted from mouse bladders.
Project description:RIVUR Trial participants had Agilent 1M probe and or Nimblegen 2.1M probe aCGH performed on genomic DNA. The study was designed to discover DNA copy number variations in genes critical in kidney/urinary tract development and urinary tract infection susceptibility. Reference DNA used is a single male sample
Project description:Purpose: to analyze the mRNA content of highly purified HCN3+ urinary tract pacemaker cells compared to HCN3- neighboring cells Methods: we sorted HCN3+ and HCN3- cells from E18.5 WT embryos and analyzed their content using RNA-seq Results: Identified differentially expressed transcripts in HCN3+ cells compared to HCN3- cells Conclusions: our study presents the first whole transcriptome analysis of HCN3+ urinary tract pacemaker cells that would provide a basis for the charactarization of the development and function of those cells
Project description:Pseudomonas aeruginosa is one of the most frequent pathogen dominant in complicated urinary tract infections (UTI). To unravel the adaptation strategies of P. aeruginosa to the conditions in the urinary tract and to define the underlying regulatory network an artificial growth system mimicking the conditions in the urinary tract was established. Transcriptome analyses were used to investigate the physiological status of P. aeruginosa under this conditions.
Project description:Pseudomonas aeruginosa is one of the most frequent pathogen dominant in complicated urinary tract infections (UTI). To unravel the adaptation strategies of P. aeruginosa to the conditions in the urinary tract and to define the underlying regulatory network an artificial growth system mimicking the conditions in the urinary tract was established. Transcriptome analyses were used to investigate the physiological status of P. aeruginosa under this conditions. We performed comparisons to identify genes induced under artificial urinary tract conditions to unravel the adaptive strategies and the underlying regulatory network used by Pseudomonas aeruginosa during urinary tract infections using Affimetrix GeneChips. Pseudomonas aeruginosa wild type strain PAO1 was grown in an artificial in vitro growth system mimicking the conditions in the urinary tract. Therefore, biofilms were grown on the surface of membrane filters placed on agar plates at 37 °C up to the late logarithmic state under aerobic and anaerobic conditions (incubated in an anaerobic beanch). An artificial urine medium (AUM) simulating the averaged urine of an human adult was used as nutrient souce. 10-fold diluted Luria Bertani (LB)-medium was used as reference medium. For growth under oxygen depletion the media were supplemented with 50 mM KNO3 to sustain anaerobic respiration. The biofilms were harveted at this time points and resuspsended in 0.9% (w/v) NaCl. The OD578 of biofilm suspension was 0.8 for all tested conditions. First comparison: Identification of genes induced or repressed under aerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown aerobically for 18 h to the late logarithmic phase in biofilms on AUM with the transcriptome profile of the PAO1 strain, which was grown aerobically for 18 h to the late logarithmic phase in biofilms on 10-fold diluted LB. Second comparison: Identification of genes induced or repressed under anaerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown anaerobically for 2 days up to the late logarithmic phase in biofilms on AUM supplemented with 50 mM nitrate with the transcriptome profile of the PAO1 strain, which was grown anaerobically for 2 days up to the late logarithmic phase in biofilms on 10-fold diluted LB supplemented with 50 mM nitrate.