Project description:Somatic mutations in the spliceosome gene ZRSR2 (located on the X chromosome) are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3' splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here, we characterize ZRSR2 as an essential component of the minor spliceosome (U12-dependent) assembly. shRNA mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns, and RNA-Sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns while splicing of the U2-type introns remain mostly unaffected. ZRSR2 deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS. RNA sequencing was performed on 16 bone marrow samples (MDS and normal) and six samples of control or ZRSR2 shRNA transduced TF-1 cells and data was analysed for aberrant splicing caused by ZRSR2 mutations/deficiency.
Project description:Somatic mutations in the spliceosome gene ZRSR2— located on the X chromosome — are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3΄ splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here, we characterize ZRSR2 as an essential component of the minor spliceosome (U12-dependent) assembly. shRNA mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns, and RNA-Sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns while splicing of the U2-type introns remain mostly unaffected. ZRSR2 deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS.
Project description:Myelodysplastic syndromes (MDS) are characterized by recurrent somatic alterations often affecting components of RNA splicing machinery. Mutations of splice factors SF3B1, SRSF2, ZRSR2 and U2AF1 occur in >50% of MDS. To assess the impact of spliceosome mutations on splicing and to identify common pathways/genes affected by distinct mutations, we performed RNA-sequencing of 24 MDS bone marrow samples harboring spliceosome mutations (including hotspot alterations of SF3B1, SRSF2 and U2AF1; small deletions of SRSF2 and truncating mutations of ZRSR2), and devoid of other common co-occurring mutations. We uncover the landscape of splicing alterations in each splice factor mutant MDS and demonstrate that SRSF2 deletions cause highest number of splicing alterations compared with other spliceosome mutations. Although the mis-spliced events observed in different splice factor mutations were largely non-overlapping, a subset of genes, including EZH2, were aberrantly spliced in multiple mutant groups. Pathway analysis revealed that the mis-spliced genes in different mutant groups were enriched in RNA splicing and transport as well as several signaling cascades, suggesting converging biological consequences downstream of distinct spliceosome mutations.
Project description:Recurrent loss-of-function mutations of spliceosome gene, ZRSR2, occur in myelodysplastic syndromes (MDS). Mutation/loss of ZRSR2 in human myeloid cells primarily causes impaired splicing of the U12-type introns. To investigate further the role of this splice factor in splicing and hematopoietic development, we generated mice lacking ZRSR2. Unexpectedly, Zrsr2-deficient mice developed normal hematopoiesis with no abnormalities in myeloid differentiation evident in either young or ≥1-year old knockout mice. Repopulation ability of Zrsr2-deficient hematopoietic stem cells was also unaffected in reconstitution assays. Myeloid progenitors lacking ZRSR2 exhibited mis-splicing of U12-type introns, however, this phenotype was moderate compared to the ZRSR2-deficient human cells. Our investigations revealed that a closely related homolog, Zrsr1, expressed in the murine hematopoietic cells, but not human, contributes to splicing of U12-type introns. Depletion of Zrsr1 in Zrsr2 KO myeloid cells exacerbated retention of the U12-type introns, thus highlighting a collective role of ZRSR1 and ZRSR2 in murine U12-spliceosome. We also demonstrate that aberrant retention of U12-type introns of MAPK9 and MAPK14 leads to their reduced protein expression. Overall, our findings highlight that both ZRSR1 and ZRSR2 are functional components of the murine U12-spliceosome, and depletion of both proteins is required to model accurately ZRSR2-mutant MDS in mice.
Project description:Control of oxidative stress in the bone marrow (BM) is key for maintaining the balance between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an oxidative stress marker in BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox.
Project description:Recurrent loss-of-function mutations of spliceosome gene, ZRSR2, occur in myelodysplastic syndromes (MDS). Mutation/loss of ZRSR2 in human myeloid cells primarily causes impaired splicing of the U12-type introns. To investigate further the role of this splice factor in splicing and hematopoietic development, we generated mice lacking ZRSR2. Unexpectedly, Zrsr2-deficient mice developed normal hematopoiesis with no abnormalities in myeloid differentiation evident in either young or ≥1-year old knockout mice. Repopulation ability of Zrsr2-deficient hematopoietic stem cells was also unaffected in reconstitution assays. Myeloid progenitors lacking ZRSR2 exhibited mis-splicing of U12-type introns, however, this phenotype was moderate compared to the ZRSR2-deficient human cells. Our investigations revealed that a closely related homolog, Zrsr1, expressed in the murine hematopoietic cells, but not human, contributes to splicing of U12-type introns. Depletion of Zrsr1 in Zrsr2 KO myeloid cells exacerbated retention of the U12-type introns, thus highlighting a collective role of ZRSR1 and ZRSR2 in murine U12-spliceosome. We also demonstrate that aberrant retention of U12-type introns of MAPK9 and MAPK14 leads to their reduced protein expression. Overall, our findings highlight that both ZRSR1 and ZRSR2 are functional components of the murine U12-spliceosome, and depletion of both proteins is required to model accurately ZRSR2-mutant MDS in mice.
Project description:Recurrent loss-of-function mutations of spliceosome gene, ZRSR2, occur in myelodysplastic syndromes (MDS). Mutation/loss of ZRSR2 in human myeloid cells primarily causes impaired splicing of the U12-type introns. To investigate further the role of this splice factor in splicing and hematopoietic development, we generated mice lacking ZRSR2. Unexpectedly, Zrsr2-deficient mice developed normal hematopoiesis with no abnormalities in myeloid differentiation evident in either young or ≥1-year old knockout mice. Repopulation ability of Zrsr2-deficient hematopoietic stem cells was also unaffected in reconstitution assays. Myeloid progenitors lacking ZRSR2 exhibited mis-splicing of U12-type introns, however, this phenotype was moderate compared to the ZRSR2-deficient human cells. Our investigations revealed that a closely related homolog, Zrsr1, expressed in the murine hematopoietic cells, but not human, contributes to splicing of U12-type introns. Depletion of Zrsr1 in Zrsr2 KO myeloid cells exacerbated retention of the U12-type introns, thus highlighting a collective role of ZRSR1 and ZRSR2 in murine U12-spliceosome. We also demonstrate that aberrant retention of U12-type introns of MAPK9 and MAPK14 leads to their reduced protein expression. Overall, our findings highlight that both ZRSR1 and ZRSR2 are functional components of the murine U12-spliceosome, and depletion of both proteins is required to model accurately ZRSR2-mutant MDS in mice.
Project description:Zrsr2 is an essential minor splicing factor. To investigate the effects of minor splicing during oogenesis, Zrsr2 mutant female mice were produced. Oogenesis was blocked at the secondary follicle stage, so follicles were recovered, and total RNA was extracted and sequenced to determine the genetic basis of this phenotype.