Project description:Feed regimens have a pivotal role in modulating the transcriptional programs that, in turns, have an impact on many biological processes, including metabolism, health and development. Green feed diet in ruminant exerts a beneficial effect on rumen metabolism and enhances the content of health-promoting biomolecules in the milk. However, a comprehensive analysis focused to the identification of genes, and therefore, biological processes modulated by the green feed diet in buffalo rumen has never been reported so far. In this regard, to highlight the impact of the green feed diet on ruminal transcriptomic profiles, we performed RNA-sequencing in buffaloes fed a total mixed ratio (TMR) + the inclusion of 30% of ryegrass green feed (treated group) in comparison with buffaloes fed a dry TMR diet (control group).
Project description:Nitrogen (N) emissions became a huge topic under environmental and nutrient concerns in dairy farming. Nitrogen is metabolized in cows as a consequence of feed crude protein digestion which is either recycled or excreted via urine, faeces and/or milk. In dairy cows differences between cows in N-recycling and N-emissions have been postulated. This study investigated 24 Holstein dairy cows in late lactation. The experimental design comprises two dietary groups (low (LP) vs normal (NP) crude protein) and two groups of milk urea content, high (HMU) vs low (LMU). Transcriptomic profiles of the liver, rumen, mammalian gland and kidney tissues were comparatively assessed by mRNA sequencing.
Project description:Long non-coding RNAs (lncRNAs) have been identified in various tissues and cell types from human, monkey, porcine and mouse. However, expression profile of lncRNAs across Guangxi native cattle and swamp buffalo muscle development has never been investigated. Here, we examine the expression of lncRNA in cattle and buffalo muscle at adult stage(12 months), exhibiting the first report of lncRNA in the Guangxi native cattle and swamp buffalo muscle development of a large animal. 16,236 lncRNA candidates were obtained from buffalo skeletal muscle samples, of which a number of lncRNAs were highly abundant, and 2,161 lncRNAs were differentially expressed between buffalo and cattle. Real-time quantitative PCR (qPCR) analysis confirmed the expression profile of these lncRNAs, including several highly abundant lncRNAs, and a subset of differently expressed lncRNAs according to the high-throughput RNA sequencing (RNA-seq) data. These results indicate that abundant lncRNA is differentially expressed in bovine muscle, indicating important and diverse functions in mammalian muscle development.
Project description:Buffalo breeding has become an important branch of beef cattle industry. It is of great significance to study buffalo meat production and meat quality. However, the important role of mRNA and lncRNA molecules in muscle stem cells (MuSCs) development in buffalo has not been explored. Then, we performed mRNA and lncRNA expression profiling analysis on the proliferation and differentiation of MuSCs in buffalo. The results showed that there were 4,820 differentially genes, 12,227 mRNAs, and 1,352 lncRNAs. These differentially expressed mRNAs are enriched in biological processes such as cell cycle, p53 signaling pathway, RNA transport, and Calcium signaling pathway and others. We also identified a number of genes, such as MCMC4, SERDINE1, ISLR, LOC102394806, and LOC102403551, and found that interference with MYLPF expression significantly inhibited the differentiation of MuSCs. In conclusion, our research revealed the role of mRNA and lncRNA expression in the differentiation of buffalo MuSCs. This study can be used as an important reference for the study of RNA regulation during muscle development in buffalo.
Project description:In this study, we studied the fibrolytic potential of the rumen microbiota in the rumen of 6 lambs separated from their dams from 12h of age and artificially fed with milk replacer (MR) and starter feed from d8, in absence (3 lambs) or presence (3 lambs) of a combination of the live yeast Saccharomyces cerevisiae CNCM I-1077 and selected yeast metabolites. The fibrolytic potential of the rumen microbiota of the lambs at 56 days of age was analyzed with a DNA microarray (FibroChip) targeting genes coding for 8 glycoside hydrolase (GH) families.
Project description:RNA sequencing (RNA-Seq) was performed on rumen papillae from 16 steers with variation in gain and feed intake. Sixteen rumen papillae samples were sequenced by Cofactor Genomics (St.Louis, MO).
Project description:The purpose of this study was to determine the effects of normal diet feed (NF) and alternative diet feed (AF) on animal performance, gene expression in adipose, liver, and muscle, and changes in bacteria and fungi in the rumen of Bos-Taurus using high-throughput sequencing methods. In addition, Interactions between differentially expressed genes (DEGs) in major metabolic organs and rumen bacteria /fungi were studied. A total of 34,360 genes were found to be expressed across all tissues examined based on transcriptome analysis. According to our findings, 34, 36, 28 genes were differentially expressed in the adipose, liver, and muscle tissues, respectively. A majority of DEGs identified were related to osteoclast differentiation, phagosomes, and immune-functions etc. A study of rumen samples revealed that Firmicutes and Bacterioidetes were the most common phyla. An AF diet significantly increased Firmicutes abundance and reduced Bacterioidetes abundance (p< 0.05). Genus-level analysis revealed that the occurrence of Faecalicatena, Intestinimonas, Lachnoclostridium, Faecalicatena, and Intestinimonas was higher (p < 0.05) in animals fed with the AF diet than in animals fed with an NF diet. As for fungi, Neocallimastigomycota accounted for 98.2% of the NF diet and 86.88% of the AF diet. The AF increased the abundance of Orpinomyces (21.15% to 29.7%), Piromyces (0.1% to 1.8%), and other fungi, but reduced the abundance of Neocallimastix (72.0% to 25.2%). Analysis of the correlation between DEGs and microbes showed that rumen bacteria/fungi significantly influenced expression levels of genes in adipose, liver, and muscle tissues