Project description:This approach aims at searching unidentified regulatory roles of the AreB transcription factor in the overall carbon metabolism of A. niger. A full areB gene deletion mutant was constructed and characterized in A. niger ATCC 1015. Both strains were grown on glucose or glycerol using ammonia as nitrogen source in batch cultivations and the transcriptome was analyzed using three biological replicated transcriptome experiments. Two areB gene deletion replicates, one on glucose and one on glycerol were discarded due to bad quality and therefore not included in the analysis. Samples for RNA extraction were collected and further processed for hybridization in custom designed Affymetrix microarrays containing probes for three Aspergillus species including A. niger.
Project description:This approach aims at searching unidentified regulatory roles of the AreB transcription factor in the overall carbon metabolism of A. niger. A full areB gene deletion mutant was constructed and characterized in A. niger ATCC 1015. Both strains were grown on glucose or glycerol using ammonia as nitrogen source in batch cultivations and the transcriptome was analyzed using three biological replicated transcriptome experiments. Two areB gene deletion replicates, one on glucose and one on glycerol were discarded due to bad quality and therefore not included in the analysis. Samples for RNA extraction were collected and further processed for hybridization in custom designed Affymetrix microarrays containing probes for three Aspergillus species including A. niger. Triplicate batch fermentations with the two Aspergillus niger strains used, the wild type A. niger strain ATCC 1015 and the areB complete gene deletion strain were carried out and transcriptome analysis was performed. Biomass from each batch cultivation was harvested in the exponential phase of growth and further processed for RNA extraction and hybridization on Affymetrix microarrays.
Project description:A segregating population was produced by crossing the tetraploid parents, the cultivar Desire and the breeding line SW93-1015. In all, 34 progeny lines were further characterized by phenotyping for multiple traits both in the field and controlled climate settings. For example the late blight resistance screening was done for the lines. Leaf transcriptomes of each line and the two parents were sequenced by Illumina HiSeq 2000 to produce RNA-seq data.