Project description:Glioblastoma (GBM) is the most common and devastating primary cancer of the central nervous system in adults. High grade gliomas are able to modify and respond to the brain microenvironment. When GBM tumors infiltrate the Subventricular zone (SVZ) they have a more aggressive clinical presentation than SVZ-distal tumors. We suggest that cerebrospinal fluid (CSF) contact contributes to enhance GBM malignant characteristics in these tumors. We evaluated the impact of human CSF on GBM, performing a transcriptome analysis on human primary GBM cells exposed to CSF of cancer and non cancer origin to measure changes in gene expression profile associated with increased malignancy and their clinical relevance on disease outcome.
Project description:Glioblastoma (GBM) is the most common and devastating primary cancer of the central nervous system in adults. High grade gliomas are able to modify and respond to the brain microenvironment. When GBM tumors infiltrate the Subventricular zone (SVZ) they have a more aggressive clinical presentation than SVZ-distal tumors. We suggest that cerebrospinal fluid (CSF) contact contributes to enhance GBM malignant characteristics in these tumors. We evaluated the impact of human CSF on GBM, performing a transcriptome analysis on human primary GBM cells exposed to CSF to measure changes in gene expression profile and their clinical relevance on disease outcome. In addition we evaluated the proliferation and migration changes of CSF-exposed GBM cells in vitro and in vivo. CSF induced transcriptomic changes in pathways promoting cell malignancy, such as apoptosis, survival, cell motility, angiogenesis, inflammation, and glucose metabolism. A genetic signature extracted from the identified transcriptional changes in response to CSF proved to be predictive of GBM patient survival using the TCGA database. Furthermore, CSF induced an increase in viability, proliferation rate, and self-renewing capacity, as well as the migratory capabilities of GBM cells in vitro. In vivo, GBM cells co-injected with human CSF generated larger and more proliferative tumors compared to controls. Taken together, these results provide direct evidence that CSF is a key player in determining tumor growth and invasion through the activation of complex gene expression patterns characteristic of a malignant phenotype. These findings have diagnostic and therapeutic implications for GBM patients. The changes induced by CSF contact might play a role in the increased malignancy of SVZ-proximal GBM.
Project description:This SuperSeries is composed of the following subset Series: GSE37664: Human cerebrospinal fluid autoantibody lipid microarray profiling (Fig. 1A) GSE37670: Human cerebrospinal fluid autoantibody lipid microarray profiling (Fig. 2A) GSE37826: Human cerebrospinal fluid autoantibody lipid microarray profiling (Fig. 2C) Refer to individual Series
Project description:RNA was isolated from fresh cerebrospinal fluid samples of multiple sclerosis and control patients and analyzed by hybridization of HG U133 plus 2.0 arrays in order to investigate disease mechanisms of multiple sclerosis and to identify transcriptional biomarker
Project description:Lipids comprise 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty-acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as novel therapeutics for MS. Fig. 1A. Lipid-array profiling of IgG+IgM antibody reactivity in cerebrospinal fluid (CSF) samples from MS patients (relapsing remitting MS; secondary progressive MS; primary progressive MS), healthy controls, and other neurological disease controls. Lipid hits with the lowest FDR (q=0.048) were clustered according to their reactivity profiles. 48 different lipids were custom-spotted in duplicate using the CAMAG Automatic TLC Sampler (ATS4) robot to spray 200 nl of 10 to 100 pmol of lipids onto PVDF membranes affixed to the surface of microscope slides. The slides were probed with cerebrospinal fluid (CSF) from 59 human patient samples. 60 slides total: 18 relapsing-remitting MS, 14 secondary-progressive MS, 1 primary-progressive MS, 21 other neurological disease, 5 healthy control, 1 secondary Ab alone (not included in this submission). CSF diluted 1/10. HRP-conjugated secondary Ab (goat anti-human IgM/IgG) diluted 1/8000. ECL for 3 minutes.