Project description:Chromatin Immuno-precipitaion sequencing was performed using HIF1 alpha antibodies to investigate its enrichment on Kaposi's sarcoma associated herpesvirus (KSHV) genome in BC3 cells and purified KSHV infected PBMCs under normoxic or hypoxic conditions
2020-11-01 | GSE149401 | GEO
Project description:Transcriptomic sequencing of Haliotis discus challenged with Haliotid herpesvirus 1
| PRJNA578026 | ENA
Project description:Transcriptomic sequencing of Haliotis diversicolor supertexta infecting with Haliotid herpesvirus 1
Project description:Roseolovirus, or human herpesvirus 6 (HHV-6) is a ubiquitous human pathogen infecting over 95% of the population by the age of two years. As with other herpesviruses, reactivation of HHV-6 can present with severe complications in immunocompromised individuals. Recent studies have highlighted the importance of herpesvirus-derived micro (mi)RNAs in modulating both cellular and viral gene expression. An initial report, which computed the likelihood of various viruses to encode for miRNAs, did not predict HHV-6 miRNAs. To experimentally screen for small HHV-6 encoded RNAs, we conducted large-scale sequencing of Sup-T-1 cells lytically infected with a laboratory strain of HHV-6B. This revealed an abundant 60-65 nucleotide RNA of unknown function derived from the lytic origin of replication (OriLyt) that gave rise to smaller RNA species of 18-19 nucleotides in length. In addition, we identified four pre-miRNAs, whose mature forms accumulated in Argonaute 2. In contrast to other beta-herpesviruses, HHV-6B miRNAs are expressed from direct repeat regions (DRL and DRR) located at either side of the genome. All miRNAs are conserved in the closely related HHV-6A variant, and one of them is a seed ortholog of the human miR-582-5p. Similar to alpha-herpesvirus miRNAs, they are expressed antisense to immediate early ORFs and thus have the potential to regulate key viral regulators. Small RNA sequencing from total RNA or Ago2 associated small RNAs extracted from HHV-6 infected Sup-T-1 cells
Project description:Roseolovirus, or human herpesvirus 6 (HHV-6) is a ubiquitous human pathogen infecting over 95% of the population by the age of two years. As with other herpesviruses, reactivation of HHV-6 can present with severe complications in immunocompromised individuals. Recent studies have highlighted the importance of herpesvirus-derived micro (mi)RNAs in modulating both cellular and viral gene expression. An initial report, which computed the likelihood of various viruses to encode for miRNAs, did not predict HHV-6 miRNAs. To experimentally screen for small HHV-6 encoded RNAs, we conducted large-scale sequencing of Sup-T-1 cells lytically infected with a laboratory strain of HHV-6B. This revealed an abundant 60-65 nucleotide RNA of unknown function derived from the lytic origin of replication (OriLyt) that gave rise to smaller RNA species of 18-19 nucleotides in length. In addition, we identified four pre-miRNAs, whose mature forms accumulated in Argonaute 2. In contrast to other beta-herpesviruses, HHV-6B miRNAs are expressed from direct repeat regions (DRL and DRR) located at either side of the genome. All miRNAs are conserved in the closely related HHV-6A variant, and one of them is a seed ortholog of the human miR-582-5p. Similar to alpha-herpesvirus miRNAs, they are expressed antisense to immediate early ORFs and thus have the potential to regulate key viral regulators.
Project description:Ostreid Herpesvirus type 1 (OsHV-1) has become a serious infective agent of the Pacific oyster livestock worldwide. In particular, the OsHV-1 muVar subtype has been associated to severe mortality episodes concerning Crassostrea gigas in France and other regions of the world such as Australia and New Zealand. Factors triggering productive infections and virus interactions with susceptible and resistant bivalve hosts are not completely understood though some studies have been undertaken to explore the genes expressed in oysters after infection. We took advantage of an highly infected oyster sample to perform an in-vivo dual RNA-seq analysis. An extremely high sequencing coverage allowed us to explore in detail the Herpesvirus genome and transcriptome, and to identify viral-activated molecular pathways in Crassostrea gigas, thus expanding the current knowledge on the host-virus interactions.