Project description:Antibiotic resistance genes expressed in the upper respiratory tract of patients infected with influenza viruses were associated with the microbial community and microbial activities. Interactions between the host systemic responses to influenza infection and ARG expression highlight the importance of antibiotic resistance in viral-bacterial co-infection.
Project description:Antibiotic resistance genes expressed in the upper respiratory tract of patients infected with influenza viruses were associated with the microbial community and microbial activities. Interactions between the host systemic responses to influenza infection and ARG expression highlight the importance of antibiotic resistance in viral-bacterial co-infection.
Project description:Antibiotic resistance genes expressed in the upper respiratory tract of patients infected with influenza viruses were associated with the microbial community and microbial activities. Interactions between the host systemic responses to influenza infection and ARG expression highlight the importance of antibiotic resistance in viral-bacterial co-infection.
Project description:Bovine respiratory epithelial cells have different susceptibility to bovine
respiratory syncytial virus infection. The cells derived from the lower
respiratory tract were significantly more susceptible to the virus than those
derived from the upper respiratory tract. Pre-infection with virus of lower
respiratory tract with increased adherence of P. multocida; this was not the
case for upper tract. However, the molecular mechanisms of enhanced
bacterial adherence are not completely understood. To investigate whether
virus infection regulates the cellular adherence receptor on bovine trachea-,
bronchus- and lung-epithelial cells, we performed proteomic analyses.
2020-07-28 | PXD019509 | JPOST Repository
Project description:Lower respiratory tract microbiome composition and community interactions in smokers
| PRJNA880638 | ENA
Project description:Lower respiratory tract infection after OMS
| PRJNA611640 | ENA
Project description:microbial community diversities in digestive tract of mice
| PRJNA433912 | ENA
Project description:Microbial alteration of lower respiratory tract from critically ill patients with community-acquired pneumonia
Project description:Rationale: Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and hospitalizations in infants worldwide. Known risk factors, however, incompletely explain the variability of RSV disease severity among children. We postulate that severity of RSV infection is influenced in part by modulation of the host immune response by the local microbial ecosystem at the time of infection. Objectives: To define whether different nasopharyngeal microbiota profiles are associated with distinct host transcriptome profiles and severity in children with RSV infection. Methods: We analyzed the nasopharyngeal microbiota profiles of young children with mild and severe RSV disease and healthy matched controls by 16S-rRNA sequencing. In parallel, we analyzed whole blood gene expression profiles to study the relationship between microbial community composition, the RSV-induced host transcriptional response and clinical disease severity. Measurements and Main results: We identified five nasopharyngeal microbiota profiles characterized by enrichment of H. influenzae, Streptococcus, Corynebacterium, Moraxella or S. aureus. RSV infection and RSV hospitalization were positively associated with H. influenzae and Streptococcus, and negatively associated with S. aureus abundance, independent of age. The host response to RSV was defined by overexpression of interferon-related genes, and this was independent of the microbiota composition. On the other hand, transcriptome profiles of RSV infected children with H. influenzae and Streptococcus-dominated microbiota were characterized by greater overexpression of genes linked to toll-like receptor-signaling and neutrophil activation and were more frequently hospitalized Conclusions: Our data suggest an immunomodulatory role for the resident nasopharyngeal microbial community early in RSV infection, potentially affecting RSV disease severity.
2016-05-09 | GSE77087 | GEO
Project description:Lower respiratory tract microbiota Raw sequence reads