Project description:Microbial communities that degrade lignocellulosic biomass are typified by high levels of species- and strain-level complexity, as well as synergistic interactions between both cellulolytic and non-cellulolytic microorganisms. Here we deconvoluted a highly efficient cellulose-degrading and methanogenic consortium (SEM1b) that is co-dominated by Clostridium (Ruminiclostridium) thermocellum and multiple heterogenic strains affiliated to C. proteolyticus. A time-series analysis was performed over the entire lifetime span of the microbial community and comprised of metagenomic, metatranscriptomic, metabolomics, metaproteomic and 16S rRNA gene analysis for 8 time points, in triplicate. Metagenomic analysis of SEM1b recovered metagenome-assembled genomes (MAGs) for each constituent population, whereas in parallel two novel strains of C. proteolyticus were isolated and sequenced. Both the recovered MAGs and the isolated strains were used as a database for further functional meta-omics. Absolute quantitative metatranscriptomics was performed thanks the spike-in of an in vitro transcribed RNA as an internal standard and label-free quantification was used for the metaproteomic analysis. The present dataset has been used for several publications. The first aim of the project was to characterize the interactions between uncultured populations in a lignocellulose-degrading community. Furthermore, because of the in-depth multi-omics characterization of the community, the dataset was used to develop new approaches for meta-omics integration as well as to assess the protein-to-RNA ratio of multiple microbial populations simultaneously. Modifications of multi-omics toolkits allowed us to assess the linearity between transcriptome and proteome for each population over time and reveal deeper functional-related trends and integrative co-dependent metabolisms that drive the overall phenotype of microbial communities.
Project description:The deep marine subsurface is one of the largest unexplored biospheres on Earth, where members of the phylum Chloroflexi are abundant and globally distributed. However, the deep-sea Chloroflexi have remained elusive to cultivation, hampering a more thorough understanding of their metabolisms. In this work, we have successfully isolated a representative of the phylum Chloroflexi, designated strain ZRK33, from deep-sea cold seep sediments. Phylogenetic analyses based on 16S rRNA genes, genomes, RpoB and EF-tu proteins indicated that strain ZRK33 represents a novel class within the phylum Chloroflexi, designated Sulfochloroflexia. We present a detailed description of the phenotypic traits, complete genome sequence and central metabolisms of the novel strain ZRK33. Notably, sulfate and thiosulfate could significantly promote the growth of the new isolate, possibly through accelerating the hydrolysis and uptake of saccharides. Thus, this result reveals that strain ZRK33 may play a crucial part in sulfur cycling in the deep-sea environments. Moreover, the putative genes associated with assimilatory and dissimilatory sulfate reduction are broadly distributed in the genomes of 27 metagenome-assembled genomes (MAGs) from deep-sea cold seep and hydrothermal vents sediments. Together, we propose that the deep marine subsurface Chloroflexi play key roles in sulfur cycling for the first time. This may concomitantly suggest an unsuspected availability of sulfur-containing compounds to allow for the high abundance of Chloroflexi in the deep sea.