Project description:The total RNA were extracted from pooled tissues of leaves and flowers from several plants of sacred lotus using TRIzol reagent (Invitrogen) according to the manufacturer's instructions. Then small RNAs ranging in 18–30 nucleotides were size fractionated electrophoretically, isolated from the gel, ligated with the 5′ and 3′ RNA adapters. The ligated product was reverse transcribed and subsequently amplified using 10–12 PCR cycles. The purified PCR product was sequenced using Illumina Genome Analyzer II. The qualified reads were used to predict phased small interfering RNAs from Chinese sacred lotus (Nelumbo nucifera Gaertn.).
Project description:Bacillus spp. and related genera native to soils of the pristine sacred groves from Meghalaya, India were characterized using biochemical and 16S rRNA gene analysis which revealed dominance of Bacillus, Paenibacillus, Lysinibacillus and Viridibacillus in the groves. Biochemical estimation was carried out for in vitro testing of plant growth promoting traits present in these isolates. PCR screening were performed for plant growth-promoting related genes involved in the biosynthesis of acid phosphatase (AcPho), indolepyruvate decarboxylase (ipdC), 1-aminocyclopropane-1-carboxylate deaminase (accd) and siderophore biosynthesis protein (asbA). 76% of the sacred grove isolates gave an amplified fragment for AcPho. Three of the isolates gave an amplified fragment for IpdC gene. Apart from 2 isolates, all the other isolates including the reference strains were positive for the amplification of the accd gene indicating their potential to produce ACC deaminase enzyme. 42% of the isolates gave an amplified fragment for asbA gene indicating the potential ability of these isolates to produce the catechol type siderophore, petrobactin. Overall findings indicated multiple PGP genetic traits present in these isolates which suggested that these isolates are capable of expressing multiple PGP traits. Phylogenetic and sequence analysis of accd and asbA genes from the isolates revealed that asbA genes from Paenibacillus taichungiensis SG3 and Paenibacillus tylopili SG24 indicated the occurrence of intergeneric horizontal transfer between Paenibacillus and Bacillus.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed
Project description:Whole exome sequencing of 5 HCLc tumor-germline pairs. Genomic DNA from HCLc tumor cells and T-cells for germline was used. Whole exome enrichment was performed with either Agilent SureSelect (50Mb, samples S3G/T, S5G/T, S9G/T) or Roche Nimblegen (44.1Mb, samples S4G/T and S6G/T). The resulting exome libraries were sequenced on the Illumina HiSeq platform with paired-end 100bp reads to an average depth of 120-134x. Bam files were generated using NovoalignMPI (v3.0) to align the raw fastq files to the reference genome sequence (hg19) and picard tools (v1.34) to flag duplicate reads (optical or pcr), unmapped reads, reads mapping to more than one location, and reads failing vendor QC.