Project description:Comparing the transcriptomic responses between the Mycobacterium avium subspecies paratuberculosis (MAP) leuD mutant with the parent strain K-10 under different environmental stresses: nutrition, temperature, anaerobic conditions, high- and low- pH conditions.
Project description:The data explore the transcriptional response of strain LY180 to 15 mM furfural under anaerobic fermentation conditions. The expression differences of oxidoreductase in LY180 are described.
2012-01-10 | GSE34956 | GEO
Project description:under different water temperature culture conditions.
Project description:In this study, the recombinant Trichoderma reesei strain HJ48 was employed to investigate the differences between anaerobic and aerobic fermentation of glucose, through genome-wide transcription analysis.Analysis of the genes induced under fermentation condition has revealed novel features in T. reesei. Our results how that many genes related to ribosome were expressed more highly under aerobic condition in HJ48.
2019-07-20 | GSE84613 | GEO
Project description:Transcriptome of corals under different temperature conditions
Project description:The ability of certain Pseudomonas (P.) species to grow or persist in anoxic habitats by either denitrification, acetate fermentation or arginine fermentation has been described in several studies as a special property. Previously, we had isolated strains belonging to the species P. lundensis, P. weihenstephanensis and P. fragi from anoxic MAP minced beef and further proved their anaerobic growth in vitro on agar plates. This follow-up study investigated the anaerobic growth of two strains per respective species in situ on inoculated chicken breast fillet under 100% N2 modified atmosphere. We were able to prove anaerobic growth of all six strains on chicken breast fillet with cell division rates of 0.2-0.8 /day. Furthermore, we characterized the anaerobic metabolic lifestyle of these Pseudomonas strains by comparative proteomics, upon their cultivation in meat simulation media, which were constantly gassed with either air or 100% N2 atmospheres. From these proteomic predictions, and respective complementation by physiological experiments, we conclude that the Pseudomonas strains P. fragi, P. weihenstephanensis, P. lundensis exhibit a similar anaerobic lifestyle and employ arginine fermentation via the arginine deiminase (ADI) pathway to grow anaerobically also on MAP meats. Furthermore, glucose fermentation to ethanol via the ED-pathway is predicted to enable long term survival but no true growth, while respiratory growth with nitrate as alternative electron acceptor or glucose fermentation to acetate could be excluded due to absence of essential genes. The citric acid cycle is partially bypassed by the glyoxylate shunt, functioning as the gluconeogenetic route without production of NADH2 under carbon limiting conditions as e.g. in packaged meats. Triggered by an altered redox balance, we also detected upregulation of enzymes involved in protein folding as well as disulphide bonds isomerization under anoxic conditions as a counteracting mechanism to reduce protein misfolding. Hence, this study reveals the mechanisms enabling anaerobic grow and persistence of common meat-spoiling Pseudomonas species, and further complements the hitherto limited knowledge of the anaerobic lifestyle of Pseudomonas species in general.
Project description:Xylose-utilizing yeasts with tolerances to fermentation inhibitors (such as weak organic acids) and high temperature are needed for cost-effective simultaneous saccharification and co-fermentation (SSCF) of lignocellulosic materials. We constructed a novel xylose-assimilating Saccharomyces cerevisiae strain with improved fermentation performance under heat and acid co-stress using the genome shuffling technique. Two xylose-utilizing diploid yeasts with different genetic backgrounds were used as the parental strains for genome shuffling. The hybrid strain Hyb-8 showed significantly higher xylose fermentation ability than both parental strains (Sun049T-Z and Sun224T-K) under co-stress conditions of heat and acids. To screen for genes that might be important for fermentation under heat and acid co-stress, a transcriptomic analysis of hybrid strain Hyb-8 and its parental strains was performed.
Project description:Second fermentation in a bottle supposes such specific conditions that undergo yeasts to a set of stress situations like high ethanol, low nitrogen, low pH or sub-optimal temperature. Also, yeast have to grow until 1 or 2 generations and ferment all sugar available while they resist increasing CO2 pressure produced along with fermentation. Because of this, yeast for second fermentation must be selected depending on different technological criteria such as resistance to ethanol, pressure, high flocculation capacity, and good autolytic and foaming properties. All of these stress factors appear sequentially or simultaneously, and their superposition could amplify their inhibitory effects over yeast growth. Considering all of the above, it has supposed interesting to characterize the adaptive response of commercial yeast strain EC1118 during second-fermentation experiments under oenological/industrial conditions by transcriptomic profiling. We have pointed ethanol as the most relevant environmental condition in the induction of genes involved in respiratory metabolism, oxidative stress, autophagy, vacuolar and peroxisomal function, after comparison between time-course transcriptomic analysis in alcoholic fermentation and transcriptomic profiling in second fermentation. Other examples of parallelism include overexpression of cellular homeostasis and sugar metabolism genes. Finally, this study brings out the role of low-temperature on yeast physiology during second-fermentation.