Project description:The tumoricidal effects of CD8+T cells are well acknowledged, but how MHC Ib-restricted CD8+T (Ib-CD8+T) cells contribute to anti-tumor immunity remains obscure. Here, we show that infusion of MHC Ia+ cells to Kb-/-Db-/- mice induced the expansion of Ib-CD8+T cells in tumors and potently inhibited tumor progression. Such priming of Ib-CD8+T cells by MHC-Ia is not MHC haplotype restricted and MHC Ia tetramers alone can prime Ib-CD8+T cells for activation. The MHC Ia priming promoted Tbet expression in Ib-CD8+T cells and in absence of Tbet, such priming effect diminished. Importantly, these tumoricidal Ib-CD8+T cells are positive for CX3CR1, and exhibit rapid proliferation, high expression of cytotoxic factors, and prolonged persistence at tumor sites. Adoptive transfer of CX3CR1+Ib-CD8+T cells to wild type mice resulted in potent anti-tumor effects. Our findings unravel an uncharacterized function of MHC Ia molecules in immunoregulation and raise the possibility of using Ib-CD8+T cells in tumor immunotherapy.
Project description:Studies using major histocompatibility complex (MHC)-Ia-deficient mice have shown that MHC-Ib-restricted CD8+ T cells can clear infections caused by intracellular pathogens such as Listeria monocytogenes. M3-restricted CD8+ T cells, which recognize short hydrophobic N-formylated peptides, appear to comprise a substantial portion of the MHC-Ib-restricted T cell response in the mouse model of L. monocytogenes infection. In this study, we isolated formyltransferase (fmt) mutant strains of L. monocytogenes that lacked the ability to add formyl groups to nascent polypeptides. These fmt mutant Listeria strains did not produce antigens that could be recognized by M3-restricted T cells. We showed that immunization of MHC-Ia-deficient mice with fmt mutant Listeria resulted in stimulation of a protective memory response that cleared subsequent challenge with wild-type L. monocytogenes, despite the fact that M3-restricted CD8+ T cells did not proliferate in these mice. These data suggest that M3-restricted T cells are not required for protection against L. monocytogenes and underscore the importance of searching for new antigen-presenting molecules among the large MHC-Ib family of proteins.
Project description:The aminopeptidase ERAAP is essential for trimming peptides presented by major histocompatibility complex (MHC) class I molecules. Inhibition of ERAAP by cytomegalovirus results in evasion of the immune response by this virus, and polymorphisms in ERAAP are associated with autoimmune disorders. How normal ERAAP function is monitored is unknown. We found that inhibition of ERAAP rapidly induced presentation of the peptide FYAEATPML (FL9) by the MHC class Ib molecule Qa-1(b). Antigen-experienced T cells specific for the Qa-1(b)-FL9 complex were frequent in naive mice. Wild-type mice immunized with ERAAP-deficient cells mounted a potent CD8(+) T cell response specific for Qa-1(b)-FL9. MHC class Ib-restricted cytolytic effector cells specifically eliminated ERAAP-deficient cells in vitro and in vivo. Thus, nonclassical Qa-1(b)-peptide complexes direct cytotoxic T cells to targets with defective antigen processing in the endoplasmic reticulum.
Project description:Several studies have demonstrated an apparent link between positive selection on hematopoietic cells (HCs) and an "innate" T-cell phenotype. Whereas conventional CD8(+) T cells are primarily selected on thymic epithelial cells (TECs) and certain innate T cells are exclusively selected on HCs, MHC class Ib-restricted CD8(+) T cells appear to be selected on both TECs and HCs. However, whether TEC- and HC-selected T cells represent distinct lineages or whether the same T-cell precursors have the capacity to be selected on either cell type is unknown. Using an M3-restricted T-cell receptor transgenic mouse model, we demonstrate that not only are MHC class Ib-restricted CD8(+) T cells capable of being selected on either cell type but that selecting cell type directly affects the phenotype of the resulting CD8(+) T cells. M3-restricted CD8(+) T cells selected on HCs acquire a more activated phenotype and possess more potent effector functions than those selected on TECs. Additionally, these two developmental pathways are active in the generation of the natural pool of M3-restricted CD8(+) T cells. Our results suggest that these two distinct populations may allow MHC class Ib-restricted CD8(+) T cells to occupy different immunological niches playing unique roles in immune responses to infection.
Project description:B-cell acute lymphoblastic leukemia (B-ALL) is the most prevailing childhood cancer. As predicated by its prenatal origin, infant B-ALL (iB-ALL) show a silent mutational landscape irrespective of the MLL rearrangement/status, suggesting that other regulatory mechanisms might be impaired in the context of the disease. Here we used the most recent Illumina MethylationEPIC Beadchip platform to describe the genome-wide DNA methylation changes observed in a total of 69 de novo MLL-AF4+, MLL-AF9+ and non-rearranged MLL iB-ALL leukemias uniformly treated according to Interfant 99/06 protocol. Please note that samples X8 and X9 (pool of B cells and BCP) correspond to samples 200340580160_R08C01 and 200340580161_R07C01 from study E-MTAB-6315, respectively.
Project description:Series of stage IB lung adenocarcinomas and large cell carcinomas. The aim of the study was to predict outcome using a Copy Number Driven Gene Expression signature. Experiment Overall Design: Homogeneous series of 72 cases of lung primary stage IB adenocarcinomas/large cell carcinomas, analyzed using the Human U133Plus 2.0 oligonucleotide arrays (Affymetrix, Santa Clara, CA).