Project description:To assess the impact of surface water across the Hun River, several sampling sites located in the mainstream and the tributary were selected representative of pollution gradient and different pollution source. Male adult zebrafish were exposed to surface water from seven sites for 4 days. The obiectives of the study was to evaluate the ability of transcriptomic profiles exposed to surface water to determine the potential biological effects, to differentiate different pollution source, and to identify the toxic components.
Project description:To assess the impact of surface water across the Hun River, several sampling sites located in the mainstream and the tributary were selected representative of pollution gradient and different pollution source. Male adult zebrafish were exposed to surface water from seven sites for 4 days. The obiectives of the study was to evaluate the ability of transcriptomic profiles exposed to surface water to determine the potential biological effects, to differentiate different pollution source, and to identify the toxic components.
Project description:To assess the impact of surface water across the Hun River, several sampling sites located in the mainstream and the tributary were selected representative of pollution gradient and different pollution source. Human mesenchymal stem cells were exposed to organic extracts of surface water from six sites for 2 days. Microarrays were used to measure the gene expression. And the gene expression profiles were used to evaluate the ability of determine the potential biological effects, to differentiate different pollution source, and to identify the toxic components.
2018-06-01 | GSE110310 | GEO
Project description:Microorganism in water source reservoir
Project description:Oil spills have polluted the marine environment for decades and continue to be a major source of polycyclic aromatic hydrocarbons (PAHs) to marine ecosystems around the globe. Although the toxicity of PAHs to fish has been well studied, the combined effects of extreme abiotic factors and oil are poorly understood. Gulf of Mexico killifish Fundulus grandis larvae (< 24 hours post hatch) were exposed to varying environmental conditions (dissolved oxygen 2, 6 ppm; temperature 20, 25, 30°C; and salinity 3, 10, 30 ppt) combined with varying concentrations of high energy water accommodated fractions (HEWAF) (total PAHs 0 – ~ 125 ppb) for a total of 48 h. Larvae survival and development were negatively affected by PAHs, starting with the lowest concentration tested (~15 ppb). High temperature + hypoxia + PAHs resulted in the lowest survival with salinity having little impact on any of the endpoints tested. Expression of the hepatic detoxifying gene cyp1a was highly induced in PAH-exposed larvae, but only under normoxic conditions. A lack of cyp1a induction under hypoxia and PAH exposure could explain the enhanced toxicity observed. This work highlights the need for more studies examining the combined impact of suboptimal water quality parameters in the presence of pollution in fish early life-stages.
2019-04-18 | GSE129998 | GEO
Project description:Faecal Pollution Source Tracking in the Ouseburn
Project description:We reported the gene expression profile of T47D cells treated with the organic extract of Particulate matter 2.5 (PM2.5) sampled next to the municipal solid waste incineration plant of Bologna city. Based on a air pollution distribution model that takes the incinaration plant as point source of emission, two sites were chosen to sample particulate matter near incineration plant: "FrulloEst" representing the maximum effect of the incineration plant, "Calamosco" representing the negative control of "FrulloEst" (minimun effect of incineration plant, same effect of other air pollution fonts). Another site, "Giardini Margherita", is chosen to sample the urban background air pollution. for each site sample collection was performed in winter and in summer season.
Project description:The biodegradable polymer poly-β-hydroxybutyrate (PHB) is a promising carbon source for biological mitigation of nitrogen pollution, a significant problem in aquaculture that physical and chemical methods have not provided a comprehensive solution. Here we investigated the impact of PHB on the zero-water-change largemouth bass culture by 30- and 40-day experiments. PHB loaded into the filter circulation pump at 4g L-1, optimum value determined by the first experiment, significantly reduced the levels of nitrate by 99.65%, nitrite by 95.96%, and total nitrogen by 85.22% compared to the control without PHB. PHB also significantly increased denitrifying bacteria (e.g., Proteobacteria and Fusobacteria) and expression of denitrification genes (e.g., nirK and nirS) in the microbial community, improving growth and health parameters of largemouth bass. While the impact may vary in other culture systems, PHB thus demonstrated its remarkable utility in aquaculture, highlighting ecological assessment and application to larger aquaculture operations as future considerations.