Project description:This study aims to understand the molecular adaptation mechanisms of fish gills to environmental Ca2+ changes. Using SuperSAGE, we compared the gene expression profiles of T. nigroviridis gills transferred from natural brackish water (10 ppt salinity,2.9 mM Ca2+) to artificial brackish water with control (2.9 mM), low (0.01 mM) or high (10 mM) Ca2+ concentrations for 2 or 12h.
Project description:we used next-generation sequencing technology to characterise mRNA-seq of brackish water (BW, 10‰), fresh water (FW, 0‰), and sea water (SW, 25‰)-treated Anguilla marmorata's gill, kidney and intestine to elucidate the molecular mechanisms of salinity adaptation.
Project description:Recirculation systems (RAS), which reduce water consumption and improve pathogen control are increasingly used in Atlantic salmon aquaculture. Performance and adaptation of fish to new farming environment is actively investigated. Here, responses to crowding stress were compared in salmon reared in two systems (RAS with brackish water and flowthrough with full salinity water) at low and high density.
Project description:Aedes aegypti, the principle global vector of arboviral diseases, has been widely regarded to only lay eggs and undergo preimaginal development in fresh water collections. Recent observations however show that it has adapted to develop in anthropogenic brackish water habitats of up to 50% sea water in coastal areas in different continents. This adaptation is characterised by greater salinity tolerance in adult oviposition preference, larvae and changes in sizes of anal papillae. The physiological basis for salinity tolerance in either Ae. aegypti or any of the known salinity-tolerant species of Anopheles malaria vectors is not established. To address this knowledge gap which is of fundamental biological interest and important for control of major diseases we performed RNAseq analysis of gut, anal papillae, and rest of the carcass of Ae. aegypti collected in the field from brackish water (BW) and fresh water habitats (FW) and then maintained as laboratory colonies in BW and FW respectively. We also examined the cuticle structure of larvae, pupae and adult BW and FW Ae. aegypti by microscopy and performed proteomic analysis of the shed cuticles of fourth instar larvae (L4) when they transformed into pupae. The results show that major changes in cuticle structure and composition characterize, and may be the principal factor that permits, the adaptation of Ae. aegypti to brackish water.