Project description:We previously reported the non-viral derivation of transgene-free induced pluripotent stem cells (iPSCs) from somatic fibroblasts of a female beagle dog using an optimized induction medium and non-transgene-integrating episomal vectors. Here, we report derivation of an induced pluripotent stem cell line OF35Y-iPS from a male beagle dog, which showed standard characteristics of pluripotency such as a strong gene expression profile of pluripotency markers, differentiation potential into all three germ layers, and normal karyotype (78XY). Furthermore, we demonstrated the iPSC line was suitable for genome editing technology. The novel iPSC line would be a useful foothold for stem cell research and regenerative veterinary medicine
Project description:In this study, beta-TCP was implanted in dog mandibles, after which the gene expression profiles and signaling pathways were monitored using microarray and Ingenuity Pathways Analysis (IPA). Following the extraction of premolars and subsequent bone healing, betaâTCP was implanted into the artificial osseous defect. Total RNA was isolated from bone tissues and gene expression profiles were examined using microarray analysis. We used microarrays to detail the global programme of gene expression and identified distinct classes of up- and down- regulated genes during this process. Waiting 3 months healing after tooth extraction from beagle dog mandibles, we drilled the holes in the dog mandibles, and implanted without and with beta-TCP. And these dog mandibles were selected for RNA extraction and hybridization on Affymetrix microarrays. After implanting beta-TCP in the dog mandibles 4, 7, 14 days, we selected sample at 3 time points: Control_4d, beta-TCP_4d, Control_7d, beta-TCP_7d, Control_14d, beta-TCP_14d.
Project description:Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers as well as germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem-cell-based therapy, generation of gene-modified animals, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrated the derivation of iPSCs from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the somatic fibroblasts temporarily acquired a neural stem cell (NSC)-like state during the reprogramming procedure. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem-cell-based research using various animals in Mammalia.
Project description:Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by the introduction of the transcription factors Oct4, Sox2, Klf4 and cMyc using various methods. Here, we describe a new approach for the derivation of murine iPSCs using a polycistronic non-viral inducible vector integrated into pseudo attP sites via the C31 integrase-mediated site-specific recombination and subsequent vector excision by Cre recombinase. The pluripotency of the derived iPSCs was proved by in vitro and in vivo tests. The derived transgene-free iPSCs reactivated the endogenous pluripotency genes like e.g. Oct4, Sox2 and Nanog and the global gene expression profiles of iPSCs lines are highly similar to ESCs and distinct from parental murine fibroblasts. We demonstrated the differentiation potential of iPSCs by generation cells of the three germ layers as well as we successfully created germline chimeric mice from transgene-free iPSCs. In this study, we presented an efficient method for the generation of transgene-free iPSCs using dual-recombinase technology.
Project description:Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by the introduction of the transcription factors Oct4, Sox2, Klf4 and cMyc using various methods. Here, we describe a new approach for the derivation of murine iPSCs using a polycistronic non-viral inducible vector integrated into pseudo attP sites via the C31 integrase-mediated site-specific recombination and subsequent vector excision by Cre recombinase. The pluripotency of the derived iPSCs was proved by in vitro and in vivo tests. The derived transgene-free iPSCs reactivated the endogenous pluripotency genes like e.g. Oct4, Sox2 and Nanog and the global gene expression profiles of iPSCs lines are highly similar to ESCs and distinct from parental murine fibroblasts. We demonstrated the differentiation potential of iPSCs by generation cells of the three germ layers as well as we successfully created germline chimeric mice from transgene-free iPSCs. In this study, we presented an efficient method for the generation of transgene-free iPSCs using dual-recombinase technology. expression data of iPSCs/ESCs/MEFs
Project description:Canine muscular dystrophy (CXMDJ) is a dog model of the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. Gene expression profile was analyzed in the diaphragm muscles of normal Beagle dogs and CXMDJ before and 1 hour after initial respiration.
Project description:Purpose: The transcriptome profiles were compared among groups of chronic stress exposure and control in two different breeds to identify genes and pathways related to response to chronic stress in the pituitary-adrenal axis. Methods: 6 male adult CFD and 6 Beagles were chosen at random with the similarities in good health, weight and other aspects. Separately, 3 of these two breeds were freely selected for the stress exposure via intermittent electrical stimulation and restraint stress, while the other 3 of these two breeds were non-disposed for normal control.The details for the disposal of dogs were: every morning dogs were restrained and electrical stimulations were exerted with a stable current of 10 mA for 6 s and then with a 6 s interval, lasting for 20 min every day. The duration of disposal was ten days.ll 12 dogs were killed by air embolism in the 11th day. Subsequently, pituitary and adrenal cortex tissues were fast collected and isolated for further high-sequencing. Results: 8 cDNA libraries were constructed for RNA-seq. A number of reads ranging from 53,295,978 to 65,414,932 was obtained in those 8 groups. About 10,000 genes and transcripts were annotated in each group. Besides,A total of 40, 346, 376, 69, 70, 38, 57, and 71 DEGs were detected in the contrasts of BP1_vs_BP2, CFDP1_vs_CFDP2, BP1_vs_CFDP1, BP2_vs_CFDP2, BAC1_vs_BAC2, CFDAC1_vs_CFDAC2, BAC1_vs_CFDAC1, and BAC2_vs_CFDAC2, respectively. Conclusions: Our results can contribute to a more comprehensive understanding about the genetic mechanisms of response to chronic stress in adrenal cortex and pituitary. Adrenal cortex and pituitary mRNA profiles of adult Chinese Field Dog and Beagle under chronic stress exposure and normal control, including BAC1 (Beagle adrenal cortex with disposal), BAC2 (Beagle adrenal cortex with non-disposal), BP1 (Beagle pituitary with disposal), BP2 (Beagle pituitary with non-disposal), CFDAC1 (Chinese Field Dog adrenal cortex with disposal), CFDAC2 (Chinese Field Dog adrenal cortex with non-disposal), CFDP1 (Chinese Field Dog pituitary with disposal), CFDP2 (Chinese Field Dog pituitary with non-disposal), were generated by deep sequencing, using Illumina Genome Analyzer IIx.
Project description:Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers as well as germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem-cell-based therapy, generation of gene-modified animals, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrated the derivation of iPSCs from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the somatic fibroblasts temporarily acquired a neural stem cell (NSC)-like state during the reprogramming procedure. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem-cell-based research using various animals in Mammalia.