Project description:A parallel expression profiling of wild-type and loss-of-function mutants of Mla6 and Mla1 powdery mildew resistance alleles was conducted using Barley1 GeneChip. Barley plants were inoculated with powdery mildew isolate 5874 and first leaves were harvested at 6 time points after pathogen inoculation. This experiment was conducted in split-split-plot experimental design with 3 replications.
Project description:A large-scale time course expression profiling of wild type (Mla12/Rar1/Rom1) and mutants (mla12-M66, M82 (rar1-1), M100 (rar1-2) and rom1) of barley cultivar Sultan 5 was conducted to understand the molecular mechanisms of delayed powdery mildew resistance. Barley plants were inoculated with powdery mildew pathogen isolate 5874. First leaves of inoculated and non-inoculated plants were harvested at six time points after pathogen inoculation. The experiment was laid out in split-split-plot design with 180 experimental units (3 replications x 2 treatments (inoculated and non-inoculated) x 5 genotypes x 6 time points).
Project description:Powdery mildew is a very common plant disease and only few plants are immune. Host interactions have been identified and characterized for the pathosystems barley-B. graminis f. sp. tritici (Bgt) and wheat-B. graminis f. sp. hordei (Bgh), whereas no data are reported about powdery mildew and nonhost plants, such as rice. On the other hand rice nonhost resistance is widely unexploited and only few expression data are available. To characterize rice response during nonhost interaction with Bgh, a global expression analysis was performed by using the GeneChipM-BM-. Rice Genome Array. To describe rice gene expression profiles during nonhost interaction, 2 week-old rice plantlets were inoculated with Bgh. Treated (inoculated) and control (mock) samples were collected 24 hours post-inoculation for GeneChipM-BM-. Rice Genome Array hybridization. For transcript proM-oM-,M-^Aling experiments with powdery mildew, entire leaves were sampled from rice plantlets 2 weeks old (cv. Nipponbare). Treated and control (mock) rice leaves were collected 24 hours post inoculation. Three biological replicates for inoculated and control plants were extracted and analysed independently with the GeneChipM-BM-. Rice Genome Array.
Project description:For transcript analysis of early hypersensitive and susceptible responses of Medicago truncatula to the powdery mildew pathogen, Erysiphe pisi, we compared transcripts from pathogen-inoculated and control (non-inoculated) plants 12 h after infection in resistant (A14), partially resistant (A20), and susceptible (DZA315.16) genotypes. Published in: Medicago truncatula to the powdery mildew 1 and anthracnose pathogens, Erysiphe pisi and Colletotrichum trifolii. Molecular Plant Pathology 8(3):307-319 Keywords: 1 time points and 3 genotypes
Project description:Grape powdery mildew (PM), caused by the biotrophic ascomycete Erysiphe necator, is a devastating fungal disease that affects most Vitis vinifera cultivars. We have previously identified a panel of V. vinifera accessions from Central Asia with partial resistance to PM that possess a Ren1-like local haplotype. In this study we show that in addition to the typical Ren1-associated late post-penetration resistance, these accessions display a range of different levels of disease development suggesting that alternative alleles or additional genes contribute to determining the outcome of the interaction with the pathogen. To identify potential Ren1-dependent transcriptional responses and functions associated with the different levels of resistance, we sequenced and analyzed the transcriptomes of these Central Asian accessions at two time-points of PM infection. Transcriptomes were compared to identify constitutive differences and PM-inducible responses that may underlie their disease resistant phenotype. Responses to E. necator in all resistant accessions were characterized by an early up-regulation of 13 genes, most encoding putative defense functions, and a late down-regulation of 32 genes, enriched in transcriptional regulators and protein kinases. Potential Ren1-dependent responses included a hotspot of co-regulated genes on chromosome 18. We also identified 81 genes whose expression levels and dynamics correlated with the phenotypic differences between the most resistant accessions ?Karadzhandahal?, DVIT3351.27, and O34-16 and the other genotypes. This study provides a first exploration of the functions associated with varying levels of partial resistance to PM in V. vinifera accessions that can be exploited as sources of genetic resistance in grape breeding programs. Eight varieties (7 resistant to powdery mildew, 2 of which are V. vinifera spp. sylvestris, 5 of which are V. vinifera spp. sativa) are infected with powdery mildew (E. necator) at two timepoints (1 dpi and 5 dpi) with three replicates for each timepoint for each condition (uninfected vs. infected), for a total of 96 samples
Project description:Infection by the pathogen grape powdery mildew (Erysiphe necator) causes changes in the transcriptome of its susceptible host Vitis vinifera. Infection triggers the host to synthesize the signaling molecule salicylic acid (SA) which regulates the expression of a broad range of defense-related plant genes. In addition, it is hypothesized that E. necator directly modulates gene expression in V. vinifera via the haustorial complex. This microarray experiment was designed to dissect host transcriptome changes triggered directly by E. necator infection and indirectly through the SA response. We accomplished this by conducting two separate global leaf transcriptome analyses using the Vitis Affymetrix GeneChip platform: in one, we compared the leaves with fully established PM colonies to healthy reference leaves, in another, we compared healthy leaves with artificially elevated SA levels to healthy reference leaves. Overlaying host transcriptome changes from these two experiments enabled us to glean out V. vinifera genes that modulate their expression in response E. necator in an SA-independent manner.
Project description:Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Keywords: all_pairs
Project description:A split-split-plot design with 144 experimental units (3 replications x 4 genotypes x 6 time points x 2 treatment types) was used to profile barley plants containing variants of Mla1 and Mla6 powdery mildew resistance genes in response to inoculation with the Blumeria graminis f. sp. hordei (Bgh) isolates 5874 (AvrMla1, AvrMla6). Barley leaves were harvested from inoculated and non-inoculated plants at 6 time points (0,8,16,20,24 and 32 hrs) after Bgh inoculation. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Rico Caldo. The equivalent experiment is BB10 at PLEXdb.]