Project description:Proteomic analysis of a commensal Staphylococcus epidermidis strain in different pH conditions for describing the molecular players involved in the skin-to-blood adaptation of the bacterium.
Project description:Staphylococcus epidermidis (SE) is one of the most common bacteria of the human skin microbiota. Despite its role as a commensal, SE has emerged as an opportunistic pathogen, associated with 80% of medical devices related infections. Moreover, these bacteria are extremely difficult to treat due to their ability to form biofilms and accumulate resistance to almost all classes of antimicrobials developed so far. Thus new preventive and therapeutic strategies are urgently needed. In spite of its clinical importance, the molecular mechanisms associated with SE colonisation and disease are still poorly understood. A deeper understanding of the metabolic and cellular processes associated with response to environmental factors characteristic of SE ecological niches in health and disease might provide new clues on colonisation and disease processes. Here we studied the impact of pH conditions, mimicking the skin pH (5.5) and blood pH (7.4), in a S. epidermidis commensal strain, belonging to the B clonal lineage, by means of next-generation proteomics and 1H NMR-based metabolomics. Moreover, we evaluated the metabolic changes occurring when a sudden pH change arise, simulating the skin barrier break produced by a catheter. We found that exposure of S. epidermidis to skin pH induced oxidative phosphorylation and biosynthesis of peptidoglycan, lipoteichoic acids and betaine. In contrast, at blood pH, the incorporation of monosaccharides and its oxidation by glycolysis and fermentation was promoted. Additionally, several proteins related to virulence and immune evasion, namely extracellular proteases and membrane iron transporters were more abundant at blood pH. In the situation of an abrupt skin-to-blood pH shift we observed the decrease in the osmolyte betaine and changes in the levels of several metabolites and proteins involved in redox cell homeostasis. Our results suggest that at the skin pH S. epidermidis cells are metabolically more active and adhesion is promoted, while at blood pH, metabolism is tuned down and cells have a more virulent profile. pH increase during commensal-to-pathogen conversion appears to be a critical environmental signal to the remodelling of the S. epidermidis metabolism towards a more pathogenic state. Targeting S. epidermidis proteins induced by a low alkaline pH and local acidification of medical devices microenvironment might be new strategies to treat and prevent S. epidermidis infections.
Project description:We sequenced mRNA from three independent biological replicates of Staphylococcus epidermidis biofilms with different proportion of dormant cells. Whole trancriptome analysis of Staphylococcus epidermidis biofilms with prevented and induced dormancy.
Project description:Staphylococcus aureus Newman and Staphylococcus epidermidis Tu3298, 20 minutes post challenge with sub-inhibitory concentration of sapienic acid vs equivalent concentration of ethanol. Challenge was added at mid logarithmic growth (OD600 0.5). Biological triplicates of samples were sequenced.
Project description:We examined the differential gene expression of Staphylococcus epidermidis and Staphylococcus epidermidis in dual species biofilms. Therefore, we performed RNA-Seq on single and dual species biofilms and we compared the gene expression levels in dual species biofilms to those in single species biofilms.
Project description:Bacterial sepsis is a major killer in hospitalized patients. Coagulase-negative staphylococci (CNS) with the leading species Staphylococcus epidermidis are the most frequent causes of nosocomial sepsis, with most infectious isolates being methicillin resistant. However, which bacterial factors underlie the pathogenesis of CNS sepsis is unknown. While it has been commonly believed that invariant structures on the surface of CNS trigger sepsis by causing an over-reaction of the immune system, we show here that sepsis caused my methicillin-resistant S. epidermidis is to a large extent mediated by the methicillin resistance island-encoded peptide toxin, PSM-mec. PSM-mec contributed to bacterial survival in whole human blood and resistance to neutrophil-mediated killing, and caused significantly increased mortality and cytokine expression in a mouse sepsis model. Furthermore, we show that the PSM-mec peptide itself, rather than the regulatory RNA in which its gene is embedded, is responsible for the observed virulence phenotype. While toxins have never been clearly indicated in CNS infections, our study shows that an important type of infection caused by the predominant CNS species, S. epidermidis, is mediated to a large extent by a toxin. Of note, these findings suggest that CNS infections may be amenable to virulence-targeted drug development approaches. We used microarrays to detail the global gene expression between S. epidermidis strain Rp62A and S. epidermidis strain Rp62A isogenic Δpsm-mec deletion mutants
Project description:We use the zebrafish embryo model to study the innate immune response against Staphylococcus epidermidis. Therefore, we injected S. epidermidis into the yolk at 2 hpf and took samples at 5 days post injection.