Project description:Over the past several decades, corals worldwide have been affected by global warming, experiencing severe bleaching events that have often lead to coral death. The symbiotic Red Sea coral Stylophora pistillata is considered an opportunistic ‘r’ strategist, thriving in relatively unstable and unpredictable environments, and it is considered a stress-tolerant species. This study aimed to examine S. pistillata gene expression and to clarify the cellular pathways that are active during short-term heat stress caused by an increase from 24°C to 34°C over a 10-day period. Total RNA was extracted from heat-stressed coral fragments, labeled and hybridized against a designated S. pistillata custom microarray containing approximately 12,000 genes. Our results show that the heat stress reaction was sighted from 32°C and intensified significantly after 34°C treatment. Protein interaction networks of up- and down-regulated genes were constructed. The main clustering groups of up-regulated genes were ER stress and ER protein folding, cell cycle, ubiquitin-mediated proteolysis, cell death and cell death regulation and cellular stress response genes. These genes were enriched in cellular pathways related to the unfolded protein response (UPR) in the ER, ER-associated degradation (ERAD) and ubiquitin-mediated proteolysis. An analysis of the down-regulated genes yielded different clusters of genes related to extracellular matrix and actin organization, collagen, negative regulation of cell death and the Notch and Wnt signaling pathways. Genes encoding redox regulation proteins and molecular chaperones may be considered accurate “early warning genes”, while genes related to sensing and repairing DNA damage are severe heat-related genes. Here, we suggest that during short-term heat stress, S. pistillata might divert cellular energy into mechanisms such as UPR and ERAD at the expense of growth and biomineralization processes in an effort to recover from the stress.
Project description:Endozoicomonas are prevalent, abundant bacterial associates of marine animal hosts, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify putative interactions within the coral holobiont, we characterized a novel Endozoicomonas isolate and assessed its transcriptomic and proteomic responses to tissue extracts of its native host, the Red Sea coral Acropora humilis, at control and elevated temperatures. We show that host cues stimulated differential expression of genes assumed to be involved in the modulation of the host immune response by Endozoicomonas, such as flagellar assembly genes, ankyrins, ephrins, and serpins. Proteome analysis revealed the upregulation of vitamin B1 and B6 biosynthetic as well as glycolytic processes by Endozoicomonas in response to host cues. We further demonstrate that the inoculation of A. humilis with its native Endozoicomonas strain resulted in enhanced holobiont health metrics, such as host tissue protein content and algal symbiont photosynthetic efficiency. Behavioral, physiological, and metabolic changes in Endozoicomonas may be key to the onset and function of mutualistic interactions within the coral holobiont, and our results suggest that the priming of Endozoicomonas to a symbiotic lifestyle may involve modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas presumably plays an important role in holobiont nutrient cycling and may therefore be implicated in its health, acclimatization, and ecological adaptation.
Project description:Publication Abstract: As climate changes, sea surface temperature anomalies that negatively impact coral reef organisms continue to increase in frequency and intensity. Yet, despite widespread coral mortality, genetic diversity remains high even in those coral species listed as threatened. While this is good news in many ways it presents a challenge for the development of biomarkers that can identify resilient or vulnerable genotypes. Taking advantage of three coral restoration nurseries in Florida that serve as long-term common garden experiments, we exposed over thirty genetically distinct Acropora cervicornis colonies to hot and cold temperature shocks seasonally and measured pooled gene expression responses using RNAseq. Targeting a subset of twenty genes, we designed a high-throughput qPCR array to quantify expression in all individuals separately under each treatment with the goal of identifying predictive and/or diagnostic thermal stress biomarkers. We observed extensive transcriptional variation in the population, suggesting abundant raw material is available for adaptation via natural selection. However, this high variation made it difficult to correlate gene expression changes with colony performance metrics such as growth, mortality, and bleaching susceptibility. Nevertheless, we identified several promising diagnostic biomarkers for acute thermal stress that may improve coral restoration and climate change mitigation efforts in the future.
Project description:Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.
Project description:Two known settlement/metamorphosis inducing stimuli (crustose coralline algae, and ethanolic extract of crustose coralline algae) and one stimulus which just induces metamorphosis (LWamide) were used to stimulate competent planula larvae of the coral Acropora millepora. Samples were taken 0.5h, 4h and 12h post induction isolate the genes controlling settlement and metamorphosis in this coral.