Project description:We characterized a multidrug-resistant (MDR) Enterobacter spp. isolate highlighting the genetic aspects of the antimicrobial resistance genes. An Enterobacter spp. isolate (Ec61) was recovered in 2014 from a transtracheal aspirate sample from a patient admitted to a Brazilian tertiary hospital and submitted to further microbiological and genomic characterization. Ec61 was identified as Enterobacter hormaechei subsp. xiangfangensis strain ST451, showing an MDR profile and the presence of genes codifying the new β-lactamase variants BKC-2 and ACT-84 and the mobile colistin resistance gene mcr-9.1.
Project description:We report the draft genome sequences of Enterobacter hormaechei subsp. xiangfangensis strains MDMC82 and MDMC76, which were isolated from the sand dunes of the Merzouga desert in the Moroccan Sahara. These bacteria are able to tolerate the harsh environmental conditions of the Moroccan desert.
Project description:Background: The predominant species in clinical Enterobacter isolates is E. hormaechei. Many articles, clinicians, and GenBank submissions misname these strains as E. cloacae. The lack of sequenced type strains or named species/subspecies for some clades in the E. cloacae complex complicate the issue. Methods: The genomes of the type strains for Enterobacter hormaechei subsp. oharae, E. hormaechei subsp. steigerwaltii, and E. xiangfangensis, and two strains from Hoffmann clusters III and IV of the E. cloacae complex were sequenced. These genomes, the E. hormaechei subsp. hormaechei type strain, and other available Enterobacter type strains were analysed in conjunction with all extant Enterobacter genomes in NCBI's RefSeq using Average Nucleotide Identity (ANI). Results: There were five recognizable subspecies of E. hormaechei: E. hormaechei subsp. hoffmannii subsp. nov., E. hormaechei subsp. xiangfangensis comb. nov., and the three previously known subspecies. One of the strains sequenced from the E. cloacae complex was not a novel E. hormaechei subspecies but rather a member of a clade of a novel species: E. roggenkampii sp. nov.. E. muelleri was determined to be a later heterotypic synonym of E. asburiae which should take precedence. Conclusion: The phylogeny of the Enterobacter genus, particularly the cloacae complex, was re-evaluated based on the type strain genome sequences and all other available Enterobacter genomes in RefSeq.