Project description:Vicious circle of some key proteins is critical in the process of tumor development. Nevertheless, the mechanism of how the epigenetic modifiers are involved in was seldom reported and has not been clearly illustrated. We found the expression of lysine specific demethylase 1 (LSD1), the first identified histone lysine demethylase, is positively correlated with transforming growth factor beta 1 (TGF β1) in gastric cancer tissues and can be promoted by TGF β1 activated (p-EKR)-(NF-κB)-p300 signaling pathway, which resulted in the progression of epithelial-mesenchymal transition (EMT) in human gastric cancer cells. On the other hand, abrogation of LSD1 leads to the down regulation of TGF β1 as well as the EMT. But in benign cells, this circle was blocked by TGF β1 induced inactivation of ERK, which suggested the distinct roles of TGF β1 against LSD1 in gastric cancer cells and benign cells. This vicious cycle may illustrate a novel mechanism for EMT in gastric cancer mediate by TGF β1 and LSD1 but not in benign cells and may serve as a new strategy for the prevention of EMT for gastric cancer.
Project description:This study aimed to establish an epithelial-mesenchymal transition (EMT) model with an immortalized human bronchial epithelial cell line, M-BE, and to identify an EMT signature gene set. The TGF-β1-induced M-BE cells got spindle-shaped fibroblast-like morphology and lost the cell-cell contact, with down-regulated expression of epithelial marker E-cadherin and up-regulated expression of mesenchymal markers N-cadherin and Vimentin. Examined by microarray, there were 2628 genes identified as significant EMT-related, including 1490 up-regulated genes (FC > 2, fdr < 0.01) and 1138 down-regulated genes (FC < 0.5, fdr < 0.01) in TGF-β1-induced M-BE cells.
Project description:To identify the dysregulated lncRNA and mRNA expression in ARPE-19 cells underwent EMT, we established a TGF-β1 induced EMT model of ARPE-19 cells. ARPE-19 cells were treated with or without 10 ng/ml TGF-β1 for 48 h. Total RNA are extracted and subjected to microarray assay (Arraystar Human LncRNA Microarray V3.0)
Project description:These data show that the genes that distinguish myofibroblasts from fibroblasts are myriad, and that some genes not traditionally associated with myofibroblast differentiation may serve as novel therapeutic targets for fibrosing disorders. Gene expression levels were assessed from total RNA on the Affymetrix U219 microarray. Here, we use transforming growth factor-β1 (TGF-β1) and prostaglandin E2 (PGE2), which has recently been shown to reverse myofibroblast differentiation, to investigate the transcriptomic changes that occur during TGF-β1-induced differentiation and PGE2-induced de-differentiation of myofibroblasts.
Project description:PHF8 exerts distinct functions in different types of cancer. However, the mechanisms underlying its specific functions in each case remain obscure. To establish whether overexpression of PHF8 regulates the TGF-β induced the epithelial-mesenchymal transition (EMT), we treated MCF10A-Mock (control) and MCF10A-PHF8wt (overexpressing wild-type PHF8) cells with TGF-β1 for 0, 24, 48 and 72 hours and performed RNA-seq in biological duplicates. Our data indicated that EMT gene signatures were significantly enriched in MCF10A-PHF8 cells with TGF-β1 treatment at all time points, strongly indicating that PHF8 overexpression induces a sustained EMT signaling program.
Project description:Fibrotic diseases have significant health impact and have been associated with differentiation of the resident fibroblasts into myofibroblasts. In particular, stiffened extracellular matrix and TGF-β1 in fibrotic lesions have been shown to promote pathogenic myofibroblast activation and progression of fibrosis in various tissues. To better understand the roles of mechanical and chemical cues on myofibroblast differentiation and how they may crosstalk, we cultured primary valvular interstitial cells (VICs) isolated from porcine aortic valves and studied how traditional TCPS culture, which presents a non-physiologically stiff environment, and TGF-β1 affect native VIC phenotypes. We carried out gene expression profiling using porcine genome microarrays from Affymetrix and found that traditional TCPS culture induces major changes in gene expression of native VICs, rendering these cells more activated and similar to cells treated with TGF-β1. We also monitored time-dependent effects induced by TGF-β1 by examining gene expression changes induced by TGF-β1 at 8 hours and 24 hours. Porcine aortic VICs were isolated and cultured with or without TGF-β1 treatment for RNA extraction and hybridization on Affymetrix microarrays. We included 3 biological replicates for each condition. P0 VICs were freshly isolated cells which had not been cultured. P2 VICs were cells that had been passaged 2 times and cultured on plastic plates in low serum media. Some of the P2 VICs were treated with TGF-β1 at 5ng/ml for 8 hours or 24 hours. All the control and TGF-β1-treated conditions were collected at the same time on day 3 of culture.
Project description:Transforming growth factor- (TGF-) signaling is a critical driver of epithelial–mesenchymal transition (EMT) and cancer progression. However, the regulatory roles of long non-coding RNAs (lncRNAs) in TGF--induced EMT and cancer progression are not well understood. Here, we identified an unannotated nuclear lncRNA LETS1 (LncRNA Enforcing TGF- Signaling 1) as a novel TGF-/SMAD target gene. Loss of LETS1 attenuates TGF--induced EMT, migration and extravasation in breast and lung cancer cells. LETS1 potentiates TGF-/SMAD signaling by stabilizing cell surface TGF- type I receptor (TRI) and thereby forms a positive feedback loop. Mechanistically, LETS1 inhibits TRI polyubiquitination by inducing the orphan nuclear receptor 4A1 (NR4A1) expression, a critical determinant of a destruction complex for inhibitory SMAD7. An unbiased interactome analysis identified the Nuclear Factor of Activated T Cells (NFAT5) as a protein partner of LETS1 to mediate activation of NR4A1 promoter. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA and elucidate the mechanism by which nuclear LETS1 potentiates TGF- receptor signaling.
Project description:Several studies have revealed thatTGF-β1 may play a key role in epithelial-mesenchymal transition (EMT); however, little is known about the effects of TGF-β1 treatment on porcine preadipocytes. To identify the key lncRNAregulator, two libraries were constructed from porcine preadipocytes were treated with or without 10 ng/mL human recombinant TGF-β1 for 48 h by using the Illumina HiSeqXten platform. RT-qPCR was used to detect the expression of ten differentially expressed lncRNAs, andthe results were consistent with the sequencing results. In addition, the lncRNATargets platform was used to construct an interaction network of lncRNAs and the Smad7 gene.A total of 39 lncRNA transcripts, including 28 upregulated and 11 downregulated transcripts, were significantly differentially expressed in the TGF-β1 group compared with the control group. Functional annotation and enrichment analysisof the host genes revealed that the differentially expressed lncRNAs were related to single-organism process, cell part and cellular process.We constituted the lncRNA/mRNAco-expression network in the TGF-βsignaling pathway.In our study, we systematically investigated the lncRNA contents in porcine preadipocytes were treated with or without 10 ng/mL human recombinant TGF-β1. A total of 8158 lncRNA transcripts were identified, and 39 of these transcripts were significantly differentially expressed between two libraries.
Project description:Tumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. Several studies have shown that the presence of TGF-β in the tumor microenvironment contributes to the skewing of neutrophils to have a more pro-tumor phenotype. However, the direct effects of TGF-β on neutrophil signaling and migration are unclear. We sought to characterize TGF-β signaling in both primary human neutrophils and the neutrophil-like cell line HL-60 and determine whether TGF-β directly induces neutrophil migration. We found that TGF-β1 does not induce neutrophil migration in either a transwell or an underagarose migration assay. However, TGF-β1 does activate signals canonically through SMAD3 and noncanonically through ERK1/2 in neutrophils in a time and dose-dependent manner. Additionally, TGF-β1 present in the tumor-conditioned media (TCM) is responsible for SMAD3 activation. Moreover, we discovered that TCM from aggressive breast cancer cells induces neutrophils to secrete leukotriene B4 (LTB4), which is a lipid mediator important for amplifying neutrophil recruitment. However, we found that TGF-β1 alone does not induce secretion of LTB4. We next performed RNA-sequencing to evaluate the effects of TGF-β1 and TCM on the neutrophil transcriptome. We found that TGF-β1 and TCM result in changes in gene transcription in HL-60 cells, specifically of two pro-tumor genes OSM and VEGFA. Together, our findings characterize the effects of TGF-β1 on neutrophil signaling, migration, and gene expression that can be applied to understanding the changes in neutrophils that occur in the tumor microenvironment.