Project description:Metabolomics studies of human plasma demonstrate a correlation of lower plasma lysophosphatidylcholines (LPC) concentrations with insulin resistance, obesity, and inflammation. This relationship is not unraveled on a molecular level. Here we investigated the effects of the abundant LPC(16:0) and LPC(18:1) on human skeletal muscle cells differentiated to myotubes. Transcriptome analysis of human myotubes treated with 10 µM LPC for 24 h revealed enrichment of up-regulated peroxisome proliferator-activated receptor (PPAR) target transcripts, including ANGPTL4, PDK4, PLIN2, and CPT1A. The increase in both PDK4 and ANGPTL4 RNA expression was abolished in the presence of either PPARδ antagonist GSK0660 or GSK3787. The induction of PDK4 by LPCs was blocked with siRNA against PPARD. The activation of PPARδ transcriptional activity by LPC was shown as PPARδ-dependent luciferase reporter gene expression and enhanced DNA binding of the PPARδ/RXR dimer. On a functional level, further results show that the LPC-mediated activation of PPARδ can reduce fatty acid-induced inflammation and ER stress in human skeletal muscle cells. The protective effect of LPC was prevented in the presence of the PPARδ antagonist GSK0660. Taking together, LPCs can activate PPARδ, which is consistent with the association of high plasma LPC levels and PPARδ-dependent anti-diabetic and anti-inflammatory effects.
Project description:A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of; muscle and embryonic stem cell lines, embryonic and developed liver (DL), and HCC. Uploaded here, is the array data from seven of the ten LPC lines used. These seven were prepared in our laboratory. The remaining LPC arrays and arrays from other tissues/cells were obtained from the GEO. A total of 405 microarrays were analysed in a meta analysis. This included the 381 publically-sourced arrays (13 of which were LPC arrays) and 24 LPC arrays performed within our lab. This data was mined to obtain signature LPC pathways and novel markers.
Project description:This study investigated the effect of Vagus Nerve Stimulation (VNS) on innate neuroinflammation and remyelination in lysolecithin (LPC) induced demyelination, a preclinical model for Multiple Sclerosis (MS). In a first experiment (demyelination experiment), LPC was injected in the corpus callosum of 33 Lewis rats, inducing a demyelinated lesion, and rats were treated with either continuously-cycled VNS (cVNS) or one-minute per day VNS (1minVNS) or sham VNS, from two days before the injection until three days post-injection (dpi), when they were killed for immunohistochemistry and proteomics analysis. This timepoint corresponded with a demyelinated lesion and peak inflammation. In a second experiment (remyelination experiment), 13 rats were analogously treated with either cVNS or sham from two days before LPC injection until 11 dpi, when they were killed for tissue prelevation for immunohistochemistry and proteomics. This timepoints corresponded with partial remyelination of the lesion. For proteomics analysis, 20 rats were randomly selected, namely five cVNS and five sham rats of the demyelination experiment, and five cVNS and five sham rats of the remyelination experiment.
2024-05-10 | PXD050858 | Pride
Project description:FACS sorted microglia from mouse lpc models
Project description:We previously showed that severe liver diseases are characterized by expansion of liver progenitor cells (LPC), which correlates with disease severity. However, the origin and role of LPC in liver physiology and in the hepatic response to injury remains a contentious topic. We have now used genetic lineage tracing of Hnf1β-expressing biliary duct cells to assess their contribution to LPC expansion and hepatocyte generation during normal liver homeostasis, and following different types of liver injury. We found that ductular reaction cells in human cirrhotic livers express HNF1β. However, HNF1β expression was not present in newly generated EpCAM-positive hepatocytes. Using a tamoxifen-inducible Hnf1βCreER/R26RYFP/LacZ mouse, we show that there is no contribution of the biliary epithelium to hepatocyte turnover during liver homeostasis in healthy mice. Moreover, after loss of liver mass, Hnf1β+ LPC did not contribute to hepatocyte regeneration. We also assessed the contribution of Hnf1β+ cells following acute and repeated liver injury. All animal models showed expansion of LPC, as assessed by immunostaining and gene expression profile of sorted YFP-positive cells. A contribution of Hnf1β+ LPC to hepatocyte generation was not detected in animal models of liver injury with preserved hepatocyte regenerative potential such as acute acetaminophen, carbon tetrachloride injury, or chronic diethoxycarbonyl-1,4-dihydro-collidin (DDC)-diet. However, in mice fed with choline-deficient ethionine-supplemented (CDE)-diet, which causes profound hepatocyte damage and arrest, a small number of hepatocytes were derived from Hnf1β+ cells. Conclusion: Hnf1β+ cells do not participate in hepatocyte turnover in the healthy liver or during liver regeneration after partial hepatectomy. After liver injury, LPC arise from the biliary duct epithelium, which gives rise to a limited number of hepatocytes only when hepatocyte regeneration is compromised. Transcriptomic profile using MoGeneST-2.0 chip from 3 samples of YFP+ CDE, 3 samples of YFP+ DDC, 2 samples of YFP+ UTR and 3 samples YFP-
Project description:We previously showed that severe liver diseases are characterized by expansion of liver progenitor cells (LPC), which correlates with disease severity. However, the origin and role of LPC in liver physiology and in the hepatic response to injury remains a contentious topic. We have now used genetic lineage tracing of Hnf1β-expressing biliary duct cells to assess their contribution to LPC expansion and hepatocyte generation during normal liver homeostasis, and following different types of liver injury. We found that ductular reaction cells in human cirrhotic livers express HNF1β. However, HNF1β expression was not present in newly generated EpCAM-positive hepatocytes. Using a tamoxifen-inducible Hnf1βCreER/R26RYFP/LacZ mouse, we show that there is no contribution of the biliary epithelium to hepatocyte turnover during liver homeostasis in healthy mice. Moreover, after loss of liver mass, Hnf1β+ LPC did not contribute to hepatocyte regeneration. We also assessed the contribution of Hnf1β+ cells following acute and repeated liver injury. All animal models showed expansion of LPC, as assessed by immunostaining and gene expression profile of sorted YFP-positive cells. A contribution of Hnf1β+ LPC to hepatocyte generation was not detected in animal models of liver injury with preserved hepatocyte regenerative potential such as acute acetaminophen, carbon tetrachloride injury, or chronic diethoxycarbonyl-1,4-dihydro-collidin (DDC)-diet. However, in mice fed with choline-deficient ethionine-supplemented (CDE)-diet, which causes profound hepatocyte damage and arrest, a small number of hepatocytes were derived from Hnf1β+ cells. Conclusion: Hnf1β+ cells do not participate in hepatocyte turnover in the healthy liver or during liver regeneration after partial hepatectomy. After liver injury, LPC arise from the biliary duct epithelium, which gives rise to a limited number of hepatocytes only when hepatocyte regeneration is compromised.
Project description:A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of; muscle and embryonic stem cell lines, embryonic and developed liver (DL), and HCC. Uploaded here, is the array data from seven of the ten LPC lines used. These seven were prepared in our laboratory. The remaining LPC arrays and arrays from other tissues/cells were obtained from the GEO.
Project description:To investigate the effect of household detergents on the mouse skin barrier, we treated mouse's back skin with two household detergents (A and B) and collected the treated skin 24 hours after the application. We then performed gene expression profiling analysis using data obtained from RNA-seq of mouse skin treated with detergent A, detergent B, and PBS. We performed gene expression profiling analysis using data obtained from RNA-seq of the skin biopsy at 24 hours after the application.