Project description:Single-cell RNA-seq of iPSC derived human kidney organoids. Single-nuclei RNA-seq data of COVID-19 patient autopsy kidney tissue. The current data was used to suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury as well as a pro-fibrotic environment which could explain acute kidney injury in COVID-19 patients and also long-term effects potentially leading to the development of chronic kidney disease.
Project description:Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID.
Project description:Recent data suggests that COVID-19 is a systemic disease affecting multiple organs including the central nervous system. Retinal involvement in COVID-19 has been indicated by several studies, yet many questions remain regarding the ability of SARS-CoV-2 to infect and replicate retinal cells and its effect on the retina. Here we have used human stem cell derived retinal organoids to study retinal infection by SARS-CoV-2. Indeed, SARS-CoV-2 can infect and replicate in retinal organoids, as it is shown to be able to infect different retinal lineages, including retinal ganglion cells and photoreceptors which are the targets of many retinal diseases leading to blindness. SARS-CoV-2 infection of retinal organoids also induces the expression of several inflammatory genes, including Interleukin 33, which is known to be associated with acute COVID-19 disease and with retinal degeneration. Finally, we show that blocking the ACE2 receptor using antibody treatment significantly reduces retinal organoid infection, indicating that SARS-CoV-2 infects retinal cells in an ACE2 dependent manner. These results suggest a direct retinal involvement in COVID-19, and emphasize the need to monitor retinal pathologies as a possible element of “long COVID”.
Project description:COVID-19 associated acute kidney injury (COVID-AKI) is a common complication of SARS-CoV-2 infection in hospitalized patients. It is unclear how susceptible human kidneys are to direct SARS-CoV-2 infection and whether pharmacologic manipulation of the renin-angiotensin II signaling (RAS) pathway modulates this susceptibility. Using induced pluripotent stem cell derived kidney organoids, SARS-CoV-1, SARS-CoV-2 and MERS-CoV tropism, defined by the paired expression of a host receptor (ACE2, NRP1 or DPP4) and protease (TMPRSS2, TMPRSS4, FURIN, CTSB or CTSL), was identified primarily amongst proximal tubule cells. Losartan, an angiotensin II receptor blocker being tested in COVID-19 patients, inhibited angiotensin II mediated internalization of ACE2, upregulated interferon stimulated genes (IFITM1 and BST2) known to restrict viral entry, and attenuated the infection of proximal tubule cells by SARS-CoV-2. Our work highlights the susceptibility of proximal tubule cells to SARS-CoV-2 and reveals a putative protective role for RAS inhibitors during SARS-CoV-2 infection.
Project description:Recent studies demonstrated that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP-TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP-TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP-TFII in mice resulted in attenuation of injury-induced kidney fibrosis. A non-biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP-TFII overexpressing fibroblasts. Overexpression of COUP-TFII in fibroblasts induced augmented glycolysis and production of alpha smooth muscle actin (αSMA) and collagen1. Knockout of COUP-TFII decreased glycolysis and collagen1 levels in fibroblasts. Chip-qPCR revealed the binding of COUP-TFII on the promoter of PGC1α. Overexpression of COUP-TFII reduced the cellular level of PGC1α. Targeting COUP-TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.
Project description:Safety issues of human iPSC-derived kidney organoids as a regenerative therapy need to be evaluated. Therefore, we studied the immunogenicity of human iPSC-derived kidney organoids. We subcutaneously implanted kidney organoids in immune-deficient IL2Ry-/-RAG2-/- mice for 1 month and hereafter performed adoptive transfer of healthy allogeneic human PBMC. We used single cell RNA sequencing (scRNA-seq) to analyze the diversity of kidney organoid cells and immune cell profiles. We investigated whether innate and adaptive immune cells invade kidney organoids, evoke an immune response, and influence the kidney organoid differentiation and functional capacity. Understanding the immunogenicity of kidney organoids will advance studies in the applicability of kidney organoids for regenerative medicine. Furthermore, it can serve as an in-vivo transplantation model to study solid organ transplantation.