Project description:Argonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic Argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique pAgo nuclease, KmAgo, from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo binds 16-20 nt long 5’-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acid. Target RNA cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.
Project description:Argonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique pAgo nuclease, KmAgo, from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo binds 16-20 nt long 5'-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acids. Target RNA cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.
Project description:Argonaute (Ago) proteins are conserved nucleic acid-guided proteins present in all domains of life. Eukaryotic Argonaute proteins (eAgos) are key players in RNA interference pathways and function as RNA-guided RNA endonucleases at physiological temperatures. Although eAgos are considered to evolve from prokaryotic Argonaute proteins (pAgos), previously studied pAgos were unable to catalyze RNA-guided RNA cleavage at physiological temperatures. Here, we describe a distinctive pAgo from mesophilic bacteria Kurthia massiliensis (KmAgo). KmAgo utilizes DNA guides to cleave single-stranded DNA (ssDNA) and RNA targets with high activity. KmAgo also utilizes RNA guides to cleave ssDNA and RNA targets at moderate temperatures. We show that KmAgo can use 5' phosphorylated DNA guides as small as 9-mers to cut ssDNA and RNA, like Clostridium butyricum Ago. Small DNA binding confers remarkable thermostability on KmAgo, and we can suppress the guide-independent plasmid processing activity of empty KmAgo by elevating the DNA guide loaded temperature. Moreover, KmAgo performs programmable cleavage of double-stranded DNA and highly structured RNA at 37°C. Therefore, KmAgo can be regarded as a DNA-guided programmable omnipotent nuclease for cleaving most types of nucleic acids efficiently. This study broadens our understanding of Ago proteins and could expand the pAgo-based DNA and RNA manipulation toolbox.
Project description:Prokaryotic Argonautes (pAgos) from mesophilic bacteria are attracting increasing attention for their genome editing potential. So far, it has been reported that KmAgo from Kurthia massiliensis can utilize DNA and RNA guide of any sequence to effectively cleave DNA and RNA targets. Here we find that three active pAgos, which have about 50% sequence identity with KmAgo, possess typical DNA-guided DNA target cleavage ability. Among them, RsuAgo from Rummeliibacillus suwonensis is mainly explored for which can cleave both DNA and RNA targets. Interestingly, RsuAgo-mediated RNA target cleavage occurs only with short guide DNAs in a narrow length range (16-20 nt), and mismatches between the guide and target sequence greatly affect the efficiency of RNA target cleavage. RsuAgo-mediated target cleavage shows a preference for a guide strand with a 5'-terminal A residue. Furthermore, we have found that RsuAgo can cleave double-stranded DNA in a low-salt buffer at 37 °C. These properties of RsuAgo provide a new tool for DNA and RNA manipulation at moderate temperatures.
Project description:Argonaute (Ago) proteins are conserved programmable nucleases present in eukaryotes and prokaryotes and provide defense against mobile genetic elements. Almost all characterized pAgos prefer to cleave DNA targets. Here, we describe a novel pAgo from Verrucomicrobia bacterium (VbAgo) that can specifically cleave RNA targets rather than DNA targets at 37°C and function as a multiple-turnover enzyme showing prominent catalytic capacity. VbAgo utilizes DNA guides (gDNAs) to cleave RNA targets at the canonical cleavage site. Meanwhile, the cleavage activity is remarkably strengthened at low concentrations of NaCl. In addition, VbAgo presents a weak tolerance for mismatches between gDNAs and RNA targets, and single-nucleotide mismatches at positions 11‒12 and dinucleotide mismatches at positions 3‒15 dramatically reduce target cleavage. Moreover, VbAgo can efficiently cleave highly structured RNA targets at 37°C. These properties of VbAgo broaden our understanding of Ago proteins and expand the pAgo-based RNA manipulation toolbox.