Project description:DNA methylation plays a critical role in development, particularly in repressing retrotransposons. The mammalian methylation landscape is dependent on the combined activities of the canonical maintenance enzyme Dnmt1 and the de novo Dnmts, 3a and 3b. Here we demonstrate that Dnmt1 displays de novo methylation activity in vitro and in vivo with specific retrotransposon targeting. We used whole-genome bisulfite and long-read Nanopore sequencing in genetically engineered methylation depleted embryonic stem cells to provide an in-depth assessment and quantification of this activity. Utilizing additional knockout lines and molecular characterization, we show that Dnmt1's de novo methylation activity depends on Uhrf1 and its genomic recruitment overlaps with targets that enrich for Trim28 and H3K9 trimethylation. Our data demonstrate that Dnmt1 can de novo add and maintain DNA methylation, especially at retrotransposons and that this mechanism may provide additional stability for long-term repression and epigenetic propagation throughout development.
Project description:We present a long-read, single-molecule mapping technology that generates hybrid genetic/epigenetic profiles of native chromosomal DNA. The genome-wide distribution of 5-hmC in human peripheral blood cells correlates well with 5-hmC DNA immunoprecipitation (hMeDIP) sequencing. However, the long single-molecule read-length of 100 kbp-1 Mbp produces 5-hmC profiles across variable genomic regions that failed to show up in the sequencing data. In addition, optical 5-hmC mapping shows a strong correlation between the 5-hmC density in gene bodies and the corresponding level of gene expression.
Project description:Here we found Rosa roxburghii fruit extracts effectively increase TERT expression and telomerase activity in cultured human mesenchymal stem cells. Both Rosa roxburghii fruit extracts by freeze drying and spray drying methods increase the activity of telomerase. Rosa roxburghii fruit freeze drying extracts is able to reduce reactive oxygen species levels, enhance SOD activity and resistance to oxidative stress, and reduce DNA damage caused by oxidative stress or radiation. Rosa roxburghii fruit extracts promoted cell proliferation, improved senescent cell morphology, delayed replicative cellular senescence, attenuated cell cycle supressors and alleviated the senescence-associated secretory phenotype. Transcriptome and metabolic profilings found that Rosa roxburghii fruit extract promote cell proliferation and DNA repair pathways, decreased triglycerides as well. Overall, we provided a theoretical basis for the application of Rosa roxburghii fruit as an anti-aging natural product.
Project description:Objectives: To perform long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors. We aim to discover new transcripts and protein isoforms expressed during immune responses to diverse pathogens. Methods: PBMCs were exposed to four microbial stimuli for 24 hours: the TLR4 ligand lipopolysaccharide (LPS), the TLR3 ligand Poly(I:C), heat-inactivated Staphylococcus aureus, Candida albicans, and RPMI medium as negative controls. Long-read sequencing (PacBio) of one donor and secretome proteomics and short-read sequencing of five donors were performed. IsoQuant was used for transcriptome construction, Metamorpheus/FlashLFQ for proteome analysis, and Illumina short-read 3’-end mRNA sequencing for transcript quantification. Results: Long-read transcriptome profiling reveals the expression of novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. We observe widespread loss of intron retention as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. In general, RNA expression differences did not result in differences in the amounts of secreted proteins. Interindividual differences in the proteome were larger than the differences between stimulated and unstimulated PBMCs. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and Poly(I:C)-stimulated PBMCs. Conclusion: Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.
Project description:a chromosome-level nuclear genome and organelle genomes of the alpine snow alga Chloromonas typhlos were sequenced and assembled by integrating short- and long-read sequencing and proteogenomic strategy
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion clones in HAP1 (t72) and HepG2 (t15). By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion (t8) and intergenic region deletion (i50) clones in HepG2 . By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:In order to polish a long-read genome assembly, short-read illumina data was obtained from Heterodera schachtii cysts (Woensdrecht population from IRS, the Netherlands). Cysts where obtained from infected plant material. Nematodes were cleaned using a sucrose gradient centrifugation step. Thereafter DNA was extracted and used for library preparation and sequencing by Illumina NextSeq500.
Project description:To identify aberrant splicing isoforms and potential neoantigens, we performed full-length cDNA sequencing of lung adenocarcinoma cell lines using a long-read sequencer MinION. We constructed a comprehensive catalog of aberrant splicing isoforms and detected isoform-specific peptides using proteome analysis.
2020-12-09 | PXD019915 | JPOST Repository
Project description:Nanopore long-read sequencing of W22 r1-sc:m3 genomic DNA